Issue |
A&A
Volume 497, Number 1, April I 2009
|
|
---|---|---|
Page(s) | 195 - 207 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/200810368 | |
Published online | 09 February 2009 |
Tracing the young massive high-eccentricity binary system
Orionis C
through periastron passage*
1
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: skraus@mpifr-bonn.mpg.de
2
Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Zelenchuk region, Karachai-Cherkesia 357147, Russia
3
Astronomical Observatory R. M. Aller, University of Santiago de Compostela, Galicia, Spain
4
Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München, Germany
5
Laboratoire Universitaire d'Astrophysique de Nice, UMR 6525 Université de Nice/CNRS, Parc Valrose, 06108 Nice Cedex 2, France
6
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
7
Centre for Astrophysics & Planetary Science, University of Kent, Canterbury CT2 7NH, UK
Received:
11
June
2008
Accepted:
27
January
2009
Context. The nearby high-mass star binary system Ori C is the brightest and most massive
of the Trapezium OB stars at the core of the Orion Nebula Cluster,
and it represents a perfect laboratory to determine the
fundamental parameters of young hot stars and to constrain the distance of the
Orion Trapezium Cluster.
Aims. By tracing the orbital motion of the Ori C components,
we aim to refine the dynamical orbit of this important binary system.
Methods. Between January 2007 and March 2008, we observed Ori C with
VLTI/AMBER near-infrared (H- and K-band) long-baseline interferometry,
as well as with bispectrum speckle interferometry with the ESO 3.6 m and the BTA 6 m
telescopes (B'- and V'-band).
Combining AMBER data taken with three different 3-telescope array configurations,
we reconstructed the first VLTI/AMBER closure-phase aperture synthesis image,
showing the
Ori C system with a resolution of ∼2 mas.
To extract the astrometric data from our spectrally dispersed AMBER data,
we employed a new algorithm, which fits the wavelength-differential visibility
and closure phase modulations along the H- and K-band and is insensitive to
calibration errors induced, for instance, by changing atmospheric conditions.
Results. Our new astrometric measurements show that the companion has
nearly completed one orbital revolution since its discovery in 1997.
The derived orbital elements imply a short-period (P ≈ 11.3 yr)
and high-eccentricity orbit (e ≈ 0.6) with periastron passage around 2002.6.
The new orbit is consistent with recently published radial velocity measurements,
from which we can also derive the first direct constraints on the mass ratio
of the binary components.
We employ various methods to derive the system mass (Msystem = 44 ± 7 )
and the dynamical distance (d = 410 ± 20 pc), which is in remarkably good agreement with
recently published trigonometric parallax measurements obtained with radio interferometry.
Key words: stars: formation / stars: fundamental parameters / stars: individual: θ¹ Orionis C / binaries: close / techniques: interferometric / stars: imaging
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.