Issue |
A&A
Volume 495, Number 3, March I 2009
|
|
---|---|---|
Page(s) | 827 - 835 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:200810559 | |
Published online | 14 January 2009 |
What can we learn about protoplanetary disks from analysis of mid-infrared carbonaceous dust emission?*
1
Université de Toulouse; UPS; CESR; 9 av. colonel Roche, 31028 Toulouse Cedex 9, France e-mail: olivier.berne@cesr.fr
2
CNRS; UMR5187; 31028 Toulouse, France
3
Observatorio Astronómico Nacional, Aptdo. Correos 112, 28803 Alcalá de Henares (Madrid), Spain
4
Laboratoire d'Astrophysique de Grenoble, Université Joseph-Fourier et CNRS-UMR 5571, BP 53, 38041 Grenoble Cedex 9, France
Received:
10
July
2008
Accepted:
14
November
2008
Context. The disks of gas and dust that form around young stars and can lead to planet formation contain polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs).
Aims. In this paper we analyze the mid-infrared (mid-IR) emission of these very small dust particles in a sample of 12 protoplanetary disks. Our goal is twofold: first we want to characterize the properties of these particles in disks and see how they are connected to interstellar matter, and second we investigate the possibility that their emission can be used as a probe of the physical conditions and evolution of the disk.
Methods. We define a basis made of three mid-IR template spectra: PAH0, PAH+, and VSGs that were derived from the analysis of reflection nebulae, and an additional PAHx spectrum that was introduced recently for analysis of the spectra of planetary nebulae.
Results. From the optimization of the fit of 12 star+disk spectra, using a linear combination of the 4 template spectra, we found that an additional small grain component with a broad feature at 8.3 μm is needed. We find that the fraction of VSG emission in disks decreases with increasing stellar temperature. VSGs appear to be destroyed by UV photons at the surface of disks, thus releasing free PAH molecules, which are eventually ionized as observed in photodissociation regions. In contrast, we observe that the fraction of PAHx increases with increasing star temperature except in the case of B stars where they are absent. We argue that this is compatible with the identification of PAHx as large ionized PAHs, most likely emitting in regions of the disk that are close to the star. Finally, we provide a UV-dependent scheme to explain the evolution of PAHs and VSGs in protoplanetary disks. These results allow us to put new constraints on the properties of two sources: IRS 48 and “Gomez's Hamburger” which are poorly characterized.
Conclusions. Very small dust particles incorporated into protoplanetary disks are processed while exposed to the intense radiation field of the central star. The resulting shape of the mid-IR spectrum can reveal this processing and be used as an efficient probe of the radiation field i.e. luminosity of central star.
Key words: astrochemistry / ISM: dust, extinction / ISM: lines and bands / stars: planetary systems: protoplanetary disks / infrared: stars / methods: observational
This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the UK) and with the participation of ISAS and NASA.
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.