Issue |
A&A
Volume 495, Number 1, February III 2009
|
|
---|---|---|
Page(s) | 169 - 181 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:200810739 | |
Published online | 22 December 2008 |
Shells, jets, and internal working surfaces in the molecular outflow from IRAS 04166+2706*
1
Observatorio Astronómico Nacional (IGN), Alfonso XII 3, 28014 Madrid, Spain e-mail: m.tafalla@oan.es
2
NRC Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, B.C. V9E 2E7, Canada
Received:
2
August
2008
Accepted:
14
September
2008
Context. IRAS 04166+2706 in Taurus is one of the closest young stellar objects whose molecular outflow contains a highly collimated, rapidly moving component.
Aims. The high symmetry and pristine appearance of this outflow suggests that its study could offer unique clues about the nature of its still mysterious underlying driving wind.
Methods. We observed the IRAS 04166+2706 outflow with the IRAM Plateau de Bure
interferometer in CO(–1) and
SiO(
–1), achieving angular resolutions of
between
and
. To improve the
quality of the CO(2–1) images, we added single-dish data to the
interferometer visibilities.
Results. The outflow consists of two distinct components. At velocities of <10 km s-1, the gas forms two opposed, approximately conical shells that have the YSO at their vertex. These shells coincide with the walls of evacuated cavities and appear to result from the acceleration of the ambient gas by a wide-angle wind. At velocities of >30 km s-1, the gas forms two opposed jets that travel along the center of the cavities and whose emission is dominated by a symmetric collection of at least 7 pairs of peaks. The velocity field of this component presents a sawtooth pattern with the gas in the tail of each peak moving more rapidly than the gas at its head. This pattern and a systematic widening of the peaks with distance from the central source are consistent with the emission arising from internal working surfaces traveling along the jet due to variations in the velocity field of ejection. We interpret this component to be the true protostellar wind, and find its composition to be consistent with a chemical model of this wind.
Conclusions. Our results favor outflow wind models that have simultaneously wide-angle and narrow components, and suggest that the EHV peaks observed in a number of outflows consist of internally-shocked wind material.
Key words: stars: formation / ISM: abundances / ISM: jets and outflows / ISM: individual objects: IRAS 04166+2706 / ISM: molecules / radio lines: ISM
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.