Issue |
A&A
Volume 494, Number 1, January IV 2009
|
|
---|---|---|
Page(s) | 361 - 371 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:200810992 | |
Published online | 11 December 2008 |
Angular momentum transport in a multicomponent solar wind with differentially flowing, thermally anisotropic ions
Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ, UK e-mail: [bbl;xxl]@aber.ac.uk
Received:
19
September
2008
Accepted:
27
November
2008
Context. The Helios measurements of the angular momentum flux L of the fast solar wind lead to a tendency for the fluxes associated with individual ion angular momenta of protons and alpha particles, Lp and , to be negative (i.e., in the sense of counter-rotation with the Sun). However, the opposite holds for the slow wind, and the overall particle contribution
tends to exceed the magnetic
contribution LM. These two aspects are at variance with previous models.
Aims. We examine whether introducing realistic ion temperature anisotropies can resolve this discrepancy.
Methods. From a general set of multifluid transport equations with gyrotropic species pressure tensors, we derive the equations governing both the meridional and azimuthal dynamics of outflows from magnetized, rotating stars. The equations are not restricted to radial flows in the equatorial plane but valid for general axisymmetric winds that include two major ion species. The azimuthal dynamics are examined in detail, using the empirical meridional flow profiles for the solar wind, constructed mainly according to measurements made in situ.
Results. The angular momentum flux L is determined by the requirement that the solution to the total angular momentum conservation law is unique and smooth in the vicinity of the Alfvén point, defined as where the combined Alfvénic Mach number . MT has to consider the contributions from both protons and alpha particles. Introducing realistic ion temperature anisotropies may introduce a change of up to
in L and up to ~1.8
in azimuthal speeds of individual ions between 0.3 and 1 AU, compared with the isotropic case. The latter has strong consequences on the relative importance of LP and LM in the angular momentum budget.
Conclusions. However, introducing ion temperature anisotropies cannot resolve the discrepancy between in situ measurements and model computations. For the fast-wind solutions, while in extreme cases LP may become negative, Lp never does. On the other hand, for the slow solar wind solutions examined, LP never exceeds LM, even though LM may be less than the individual ion contribution, since Lp and always have opposite signs for the slow and fast wind alike.
Key words: Sun: rotation / Sun: magnetic fields / solar wind / stars: rotation / stars: winds, outflows
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.