Issue |
A&A
Volume 477, Number 1, January I 2008
|
|
---|---|---|
Page(s) | 25 - 34 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20078310 | |
Published online | 23 October 2007 |
Magnetic processes in a collapsing dense core
II. Fragmentation. Is there a fragmentation crisis?
1
Laboratoire de radioastronomie millimétrique, UMR 8112 du CNRS, École normale supérieure et Observatoire de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France e-mail: patrick.hennebelle@ens.fr
2
Service d'Astrophysique, CEA/DSM/DAPNIA/SAp, Centres d'Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
Received:
18
July
2007
Accepted:
17
September
2007
Context.A large fraction of stars are found in binary systems. It is therefore important for our understanding of the star formation process, to investigate the fragmentation of dense molecular cores.
Aims.We study the influence of the magnetic field, ideally coupled to the gas, on the fragmentation in multiple systems of collapsing cores.
Methods.We present high resolution numerical simulations performed with the RAMSES MHD code starting with a uniform sphere in solid body rotation and a uniform magnetic field parallel to the rotation axis. We pay particular attention to the strength of the magnetic field and interpret the results using the analysis presented in a companion paper.
Results.The results depend much on the amplitude, A, of the perturbations seeded initially.
For a low amplitude, , we find that for values of the mass-to-flux over critical mass-to-flux ratio, μ, as high as
,
the centrifugally supported disk which fragments in the hydrodynamical case is stabilized
and remains axisymmetric.
Detailed investigations reveal that this is due to the rapid growth of the
toroidal magnetic field induced by the differential motions within the disk.
For values of μ smaller than
5, corresponding
to higher magnetic intensities, there is no centrifugally supported disk because of
magnetic braking.
When the amplitude of the perturbation is equal to
, each initial peak develops independently
and the core fragments for a large range of μ. Only for values of μ close
to 1 is the magnetic field able to prevent the fragmentation.
Conclusions.Since a large fraction of stars are binaries, the results of low magnetic intensities preventing the fragmentation in the case of weak perturbations is problematic. We discuss three possible mechanisms which could lead to the formation of binary systems, namely the presence of high amplitude fluctuations in the core initially, ambipolar diffusion and fragmentation during the second collapse.
Key words: magnetohydrodynamics (MHD) / instabilities / ISM: kinematics and dynamics / ISM: structure / ISM: clouds
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.