Issue |
A&A
Volume 477, Number 1, January I 2008
|
|
---|---|---|
Page(s) | 273 - 283 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20077820 | |
Published online | 26 October 2007 |
Temporal evolution of the Evershed flow in sunspots*
II. Physical properties and nature of Evershed clouds
1
Instituto de Astrofísica de Andalucía, CSIC, Apdo. 3004, 18080 Granada, Spain e-mail: lbellot@iaa.es
2
High Altitude Observatory, NCAR, 3080 Center Green Dr. CG-1, 80301 Boulder CO, USA
Received:
8
May
2007
Accepted:
4
September
2007
Context.Evershed clouds (ECs) represent the most conspicuous variation of the Evershed flow in sunspot penumbrae.
Aims.We determine the physical properties of ECs from high spatial and temporal resolution spectropolarimetric measurements. This information is used to investigate the nature of the EC phenomenon.
Methods.The Stokes profiles of four visible and three infrared spectral lines are subject to inversions based on simple one-component models as well as more sophisticated realizations of penumbral flux tubes embedded in a static ambient field (uncombed models).
Results.According to the one-component inversions, the EC phenomenon can be understood as a perturbation of the magnetic and dynamic configuration of the penumbral filaments along which the ECs move. The uncombed inversions, on the other hand, suggest that ECs are the result of enhancements in the visibility of penumbral flux tubes. We conjecture that these enhancements are caused by a perturbation of the thermodynamic properties of the tubes, rather than by changes in the vector magnetic field. This mechanism is investigated performing numerical experiments of thick penumbral tubes in mechanical equilibrium with a background field.
Conclusions.While the one-component inversions confirm many of the properties indicated by a simple line parameter analysis (Paper I of this series), we give more credit to the results of the uncombed inversions because they take into account, at least in an approximate manner, the fine structure of the penumbra.
Key words: sunspots / Sun: magnetic fields / Sun: photosphere
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.