Issue |
A&A
Volume 492, Number 3, December IV 2008
|
|
---|---|---|
Page(s) | 695 - 701 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:200810444 | |
Published online | 01 October 2008 |
Hadronic versus leptonic origin of the gamma-ray emission from supernova remnant RX J1713.7-3946
1
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk, Russia e-mail: berezhko@ikfia.ysn.ru
2
Max Planck Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany e-mail: Heinrich.Voelk@mpi-hd.mpg.de
Received:
23
June
2008
Accepted:
25
August
2008
Aims. The hadronic vs. leptonic origin of the gamma-ray emission from the Supernova Remnant RX J1713.7-3946 is discussed both in the light of new observations and from a theoretical point of view.
Methods. The existing good spatial correlation of the gamma-ray emission and the nonthermal X-ray emission is analyzed theoretically. In addition, the recently published new HESS observations define the energy spectrum more precisely, in particular at the high and low energy ends of the instrument's dynamical range. There now exist much more constraining X-ray observations from Suzaku that extend substantially beyond 10 keV. These new data are compared with the authors' previous theoretical predictions, both for dominant hadronic and for simple inverse Compton models.
Results. Apart from the well-known MHD correlation between magnetic field strength and plasma density variations, emphasized by the wind-bubble-structure of the remnant, it is argued that the regions of magnetic field amplification also are correlated with enhanced densities of accelerated nuclear particles and the associated streaming instabilities. Therefore a correlation of nonthermal X-ray and γ-ray emission is not only possible but even to be expected for a hadronic emission scenario. A leptonic origin of the gamma-ray emission would require an implausibly uniform strength of the magnetic field. The observational and theoretical inferences about substantial field amplification in this remnant agree very well with the recent X-ray and γ-ray observations.
Conclusions. All this argues strongly for the dominance of hadronic γ-rays in the γ-ray emission spectrum and a fortiori for an overwhelming contribution of nuclear cosmic ray particles to the nonthermal energy in this remnant.
Key words: ISM: cosmic rays / acceleration of particles / shock waves / stars: supernovae: individual: SNR RX J1713.7-3946 / radiation mechanisms: non-thermal / gamma rays: theory
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.