Issue |
A&A
Volume 492, Number 1, December II 2008
|
|
---|---|---|
Page(s) | 101 - 109 | |
Section | Galactic structure, stellar clusters, and populations | |
DOI | https://doi.org/10.1051/0004-6361:200810275 | |
Published online | 27 October 2008 |
The evolution of two stellar populations in globular clusters
I. The dynamical mixing timescale
Argelander Institute for Astronomy (AIfA), Auf dem Hügel 71, 53121 Bonn, Germany e-mail: decressin@astro.uni-bonn.de
Received:
28
May
2008
Accepted:
10
October
2008
Aims. We investigate the long-term dynamical evolution of two distinct stellar populations of low-mass stars in globular clusters in order to study whether the energy equipartition process can explain the high number of stars harbouring abundance anomalies seen in globular clusters.
Methods. We analyse N-body models by artificially dividing the low-mass stars
(
) into two populations: a small number of stars (second
generation) consistent with an invariant IMF and with low specific
energies initially concentrated towards the cluster-centre mimic stars
with abundance anomalies. These stars form from the slow winds of
fast-rotating massive stars. The main part of low-mass (first generation)
stars has the pristine composition of the cluster. We study in detail how
the two populations evolve under the influence of two-body relaxation and
the tidal forces due to the host galaxy.
Results. Stars with low specific energy initially concentrated toward the cluster centre need about two relaxation times to achieve a complete homogenisation throughout the cluster. For realistic globular clusters, the number ratio between the two populations increases only by a factor 2.5 due to the preferential evaporation of the population of outlying first generation stars. We also find that the loss of information on the stellar orbital angular momentum occurs on the same timescale as spatial homogenisation.
Conclusions. To reproduce the high number of chemically anomalous stars in globular clusters by preserving an invariant IMF, more efficient mechanisms such as primordial gas expulsion are needed to expel the stars in the outer cluster parts on a short timescale.
Key words: globular clusters: general / stellar dynamics / methods: N-body simulations
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.