Issue |
A&A
Volume 491, Number 1, November III 2008
Diagnostics of interstellar hydrogen in the heliosphere
|
|
---|---|---|
Page(s) | 253 - 265 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:200810373 | |
Published online | 23 September 2008 |
Modeling He-rich subdwarfs through the hot-flasher scenario
1
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina e-mail: mmiller@fcaglp.unlp.edu.ar
2
Instituto de Astrofísica La Plata, UNLP-CONICET, Argentina
3
Dr. Remeis-Stenwarte Bamberg, Sterwartstr. 7, 96049 Bamberg, Germany
4
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748, Garching, Germany
Received:
11
June
2008
Accepted:
22
August
2008
We present 1D numerical simulations aimed at studying the hot-flasher scenario for the formation of He-rich subdwarf stars. Sequences were calculated for a wide range of metallicities and physical assumptions, such as the stellar mass at the moment of the helium core flash. This allows us to study the two previously proposed flavors of the hot-flasher scenario (“deep” and “shallow” mixing cases) and to identify a third transition type. Our sequences are calculated by solving simultaneously the mixing and burning equations within a diffusive convection picture, and in the context of standard mixing length theory. We are able to follow chemical evolution during deep-mixing events in which hydrogen is burned violently, and therefore able to present a homogeneous set of abundances for different metallicities and varieties of hot-flashers. We extend the scope of our work by analyzing the effects of non-standard assumptions, such as the effect of chemical gradients, extra-mixing at convective boundaries, possible reduction in convective velocities, or the interplay between difussion and mass loss. Particular emphasis is placed on the predicted surface properties of the models. We find that the hot-flasher scenario is a viable explanation for the formation and surface properties of He-sdO stars. Our results also show that, during the early He-core burning stage, element diffusion may produce the transformation of (post hot-flasher) He-rich atmospheres into He-deficient ones. If this is so, then we find that He-sdO stars should be the progenitors of some of the hottest sdB stars.
Key words: stars: evolution / stars: horizontal-branch / stars: subdwarfs / stars: mass-loss
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.