Issue |
A&A
Volume 490, Number 3, November II 2008
|
|
---|---|---|
Page(s) | 1019 - 1037 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20078893 | |
Published online | 11 September 2008 |
Testing the inverse-Compton catastrophe scenario in the intra-day variable blazar S5 0716+71
III. Rapid and correlated flux density variability from radio to sub-mm bands
1
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: lfuhrmann@mpifr-bonn.mpg.de
2
Dipartimento di Fisica, Università di Perugia, via A. Pascoli, 06123 Perugia, Italy
3
INAF - Osservatorio Astronomico di Torino, via Osservatorio 20, 10025 Pino Torinese (TO), Italy
4
Instituto de Astrofísica de Andalucía, CSIC, Apartado 3004, 18080 Granada, Spain
5
Korea Astronomy & Space Science Institute, 61-1 Hwaam-dong, 305-348 Daejeon, Korea
6
Hungarian Academy of Sciences Research Group for Physical Geodesy and Geodynamics, Budapest, Hungary
7
FÖMI Satellite Geodetic Observatory, Budapest, Hungary
8
School of Physics & Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
9
Landessternwarte Heidelberg-Königstuhl, Königstuhl, 69117 Heidelberg, Germany
10
Dipartimento di Fisica Generale “Amedeo Avogadro”, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
11
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy
12
Institut de Radio Astronomie Millimétrique, Avenida Divina Pastora 7, Local 20, 18012 Granada, Spain
13
Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire de Grenoble, 38406 Saint-Martin d'Hères, France
14
Metsähovi Radio Observatory, Helsinki University of Technology, Metsähovintie 114, 02540 Kylmälä, Finland
15
Arizona Radio Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA
16
University of Arizona, Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721, USA
17
ASTRON, Postbus 2, 7990 AA Dwingeloo; and Astronomical Institute, University of Amsterdam, The Netherlands
Received:
19
October
2007
Accepted:
3
September
2008
Aims. The BL Lac object S5 0716+71 was observed in a global multi-frequency campaign to search for rapid and correlated flux density variability and signatures of an inverse-Compton (IC) catastrophe during the states of extreme apparent brightness temperatures.
Methods. The observing campaign involved simultaneous ground-based monitoring at radio to IR/optical wavelengths and was centered around a 500-ks pointing with the INTEGRAL satellite (November 10-17, 2003). Here, we present the combined analysis and results of the radio observations, covering the cm- to sub-mm bands. This facilitates a detailed study of the variability characteristics of an inter- to intra-day variable IDV source from cm- to the short mm-bands. We further aim to constrain the variability brightness temperatures (TB) and Doppler factors (δ) comparing the radio-bands with the hard X-ray emission, as seen by INTEGRAL at 3-200 keV.
Results. 0716+714 was in an exceptionally high state and different (slower) phase of short-term variability, when compared to the past, most likely due to a pronounced outburst shortly before the campaign.
The flux density variability in the cm- to mm-bands is dominated by a ~4 day time
scale amplitude increase of up to ~35%, systematically more pronounced towards
shorter wavelengths. The cross-correlation analysis reveals systematic time-lags with the
higher frequencies varying earlier, similar to canonical variability on longer time-scales.
The increase of the variability amplitudes with frequency contradicts expectations from
standard interstellar scintillation (ISS) and suggests a source-intrinsic origin for the
observed inter-day variability. We find an inverted synchrotron spectrum peaking near 90 GHz,
with the peak flux increasing during the first 4 days. The lower limits to TB derived
from the inter-day variations exceed the 1012 K IC-limit by up to 3-4 orders of magnitude.
Assuming relativistic boosting, our different estimates of δ yield robust and self-consistent lower limits of – in good agreement with
obtained from VLBI studies and the IC-Doppler factors
> 14-16 obtained from the INTEGRAL data.
Conclusions. The non-detection of S5 0716+714 with INTEGRAL in this campaign excludes an excessively high X-ray flux associated with a simultaneous IC catastrophe. Since a strong contribution from ISS can be excluded, we conclude that relativistic Doppler boosting naturally explains the apparent violation of the theoretical limits. All derived Doppler factors are internally consistent, agree with the results from different observations and can be explained within the framework of standard synchrotron-self-Compton (SSC) jet models of AGN.
Key words: galaxies: active / BL Lacertae objects: general / BL Lacertae objects: individual: S5 0716+71.III / radio continuum: galaxies / quasars: general / radiation mechanisms: non-thermal
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.