Issue |
A&A
Volume 490, Number 1, October IV 2008
|
|
---|---|---|
Page(s) | 243 - 252 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:200810233 | |
Published online | 25 August 2008 |
A seismic approach to testing different formation channels of subdwarf B stars
1
Department of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, The Netherlands e-mail: hailihu@astro.ru.nl
2
Institute of Astronomy, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
3
Observatoire de Paris, LESIA, 5 place Jules Janssen, 92195 Meudon Principal Cedex, France
4
Department of Physics and Astronomy, Iowa State Univeristy, Ames, IA 50014, USA
5
Institute d'Astrophysique et Géophysique, Université de Liège, allée du 6 Août, 17, 4000 Liège, Belgium
Received:
21
May
2008
Accepted:
22
July
2008
Context. There are many unknowns in the formation of subdwarf B stars. Different formation channels are considered to be possible and to lead to a variety of helium-burning subdwarfs. All seismic models to date, however, assume that a subdwarf B star is a post-helium-flash-core surrounded by a thin inert layer of hydrogen.
Aims. We examine an alternative formation channel, in which the subdwarf B star
originates from a massive (>~2 ) red giant with a
non-degenerate helium-core. Although these subdwarfs may evolve through the same
region of the
diagram as the canonical post-flash
subdwarfs, their interior structure is rather different. We examine how this
difference affects their pulsation modes and whether it can be observed.
Methods. Using detailed stellar evolution calculations we construct subdwarf B models from both formation channels. The iron accumulation in the driving region due to diffusion, which causes the excitation of the modes, is approximated by a Gaussian function. The pulsation modes and frequencies are calculated with a non-adiabatic pulsation code.
Results. A detailed comparison of two subdwarf B models from different channels, but
with the same and Teff, shows that their mode excitation is
different. The excited frequencies are lower for the post-flash than
for the post-non-degenerate subdwarf B star. This is mainly due to the differing chemical
composition of the stellar envelope. A more general comparison between two grids
of models shows that the excited frequencies of most post-non-degenerate
subdwarfs cannot be well-matched with the frequencies of post-flash subdwarfs.
In the rare event that an acceptable seismic match is found, additional
information, such as mode identification and
and Teff
determinations, allows us to distinguish between the two formation channels.
Key words: stars: subdwarfs / stars: evolution / stars: oscillations / methods: numerical
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.