Issue |
A&A
Volume 490, Number 1, October IV 2008
|
|
---|---|---|
Page(s) | 125 - 133 | |
Section | Galactic structure, stellar clusters, and populations | |
DOI | https://doi.org/10.1051/0004-6361:200810163 | |
Published online | 11 September 2008 |
Dynamical mass of a star cluster in M 83: a test of fibre-fed multi-object spectroscopy
1
Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK e-mail: s.moll@sheffield.ac.uk; Paul.Crowther@sheffield.ac.uk
2
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China
3
Sterrenkundig Instituut, Universiteit Utrecht, PO Box 80000, 3508 TA Utrecht, The Netherlands
4
Space Telescope Science Institute and European Space Agency, Baltimore MD 21218, USA
5
Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
6
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, 1098 SJ Amsterdam, The Netherlands
7
Section Computational Science, University of Amsterdam, 1098 SJ Amsterdam, The Netherlands
Received:
8
May
2008
Accepted:
29
July
2008
Aims. We obtained VLT/FLAMES+UVES high-resolution, fibre-fed spectroscopy of five young massive clusters (YMCs) in M 83 (NGC 5236). This forms the basis of a pilot study testing the feasibility of using fibre-fed spectroscopy to measure the velocity dispersions of several clusters simultaneously, in order to determine their dynamical masses. In principle, this reduces the telescope time required to obtain a statistically significant sample of dynamical cluster masses. These can be used to assess the long-term survivability of YMCs by comparing their dynamical and photometric masses, which are necessary to ascertain the potential evolution of YMCs into second-generation globular clusters.
Methods. We adopted two methods for determining the velocity dispersion of the
star clusters: cross-correlating the cluster spectrum with the
template spectra and minimising a value
between the cluster spectrum and the broadened template spectra.
We also considered both red giant and red supergiant template
stars.
Cluster 805 in M 83 (following the notation of Larsen) was
chosen as a control to test the
reliability of the results obtained by this observational method,
through a comparison with the results obtained from a standard
echelle VLT/UVES spectrum obtained by Larsen & Richtler.
Results. We find no dependence of the velocity dispersions measured for a
cluster on the choice of red giant versus red supergiant templates,
nor on the method adopted. However, we do find that the standard
deviation of the results obtained with only one method may
underestimate the true uncertainty.
We measure a velocity dispersion of
for
cluster 805 from our fibre-fed spectroscopy.
This is in excellent agreement with the velocity dispersion of
determined from the standard echelle UVES spectrum of cluster 805.
Our FLAMES+UVES velocity dispersion measurement gives
,
consistent with previous results. This value of the virial mass is
a factor of ~3 greater than the cluster's photometric mass,
indicating a lack of virial equilibrium.
However, based on its effective star formation efficiency, the cluster
is likely to virialise, and may survive for a
Hubble time, in the absence of external disruptive forces.
Unfortunately, our observations of the other M 83 star clusters have
insufficient signal-to-noise ratios to determine robust cluster
velocity dispersions.
Conclusions. We find that reliable velocity dispersions can be determined from high-resolution, fibre-fed spectroscopy. The advantages of observing several clusters simultaneously outweighs the difficulty of accurate galaxy background subtraction, providing that the targets are chosen to provide sufficient signal-to-noise ratios, and are much brighter than the galaxy background.
Key words: galaxies: clusters: general / galaxies: individual: M 83 / galaxies: spiral
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.