Issue |
A&A
Volume 489, Number 3, October III 2008
|
|
---|---|---|
Page(s) | 1389 - 1398 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20065648 | |
Published online | 25 August 2008 |
Precise wavefront correction with an unbalanced nulling interferometer for exo-planet imaging coronagraphs
1
MIRA project, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan e-mail: [jun.nishikawa;naoshi.murakami]@nao.ac.jp
2
Extrasolar Planet Project Office, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
3
Division of Optical and Infrared Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
4
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
Corresponding authors: Lyu.Abe@unice.fr takayuki.kotani@obspm.fr
Received:
22
May
2006
Accepted:
3
June
2008
Context. Coronagraphs of high dynamical range used for direct exo-planet detection (109–1010 contrast) on small angular separation (few units) usually require an input wavefront quality of approximately ten thousandths of a wavelength rms.
Aims. We propose a novel method based on a pre-optics setup that behaves partly as a low-efficiency coronagraph, and partly as a high-sensitivity wavefront aberration compensator (phase and amplitude). The combination of the two effects results in a highly accurate corrected wavefront.
Methods. First, an (intensity-) unbalanced nulling interferometer (UNI) performs a rejection of part of the wavefront electric field. Then, the input aberrations of the recombined output wavefront are magnified. Because of the unbalanced recombination scheme, aberrations can be free of phase singular points (zeros) and can therefore be compensated by a downstream phase and amplitude correction (PAC) adaptive optics system, using two deformable mirrors.
Results. In the image plane, the central star's peak intensity and the noise level of its speckled halo are reduced by the UNI-PAC combination: the output-corrected wavefront aberrations can be interpreted as an improved compensation of the initial (eventually already corrected) incident wavefront aberrations.
Conclusions. The important conclusion is that not all of the elements in the optical setup using UNI-PAC need to reach the λ/10 000 rms surface error quality.
Key words: instrumentation: interferometers / instrumentation: adaptive optics / techniques: interferometric / planetary systems
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.