Issue |
A&A
Volume 489, Number 3, October III 2008
|
|
---|---|---|
Page(s) | 1183 - 1187 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:200810177 | |
Published online | 11 September 2008 |
Research Note
Dehydrogenated polycyclic aromatic hydrocarbons and UV bump
1
Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, 09012 Capoterra (CA), Italy e-mail: [gmalloci; gmulas; ccp]@ca.astro.it
2
Centre d'Étude Spatiale des Rayonnements, Université de Toulouse, CNRS, Observatoire Midi-Pyrénées, 9 avenue du Colonel Roche, 31028 Toulouse Cedex 04, France e-mail: christine.joblin@cesr.fr
Received:
12
May
2008
Accepted:
5
August
2008
Context. Recent calculations have shown that the UV bump at about 217.5 nm
in the extinction curve can be explained by a complex mixture of polycyclic
aromatic hydrocarbons (PAHs) in several ionisation states.
Other studies proposed that the carriers are a restricted population made of
neutral and singly-ionised dehydrogenated coronene molecules
(C24Hn, ), in line with models of the hydrogenation state
of interstellar PAHs predicting that medium-sized species
are highly dehydrogenated.
Aims. To assess the observational consequences of the latter hypothesis we have undertaken a systematic theoretical study of the electronic spectra of dehydrogenated PAHs. We use our first results to see whether such spectra show strong general trends upon dehydrogenation.
Methods. We performed calculations using state-of-the-art techniques in the framework of the density functional theory (DFT) to obtain the electronic ground-state geometries, and of the time-dependent DFT to evaluate the electronic excited-state properties.
Results. We computed the absorption cross-section of the species C24Hn (n = 12, 10, 8, 6, 4, 2, 0) in their neutral and cationic charge-states. Similar calculations were performed for other PAHs and their fully dehydrogenated counterparts.
Conclusions. π-electron energies are always found to be
strongly affected by dehydrogenation. In all cases we examined, progressive
dehydrogenation translates into a correspondingly progressive blue shift of
the main electronic transitions. In particular, the collective
resonance becomes broader and bluer with dehydrogenation. Its
calculated energy position is therefore predicted to fall in the gap
between the UV bump and the far-UV rise
of the extinction curve. Since this effect appears to be systematic,
it poses a tight observational limit on the column
density of strongly dehydrogenated medium-sized PAHs.
Key words: ISM: dust, extinction / ISM: lines and bands / ISM: molecules / ultraviolet: ISM / astrochemistry / molecular data
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.