Issue |
A&A
Volume 488, Number 3, September IV 2008
|
|
---|---|---|
Page(s) | 1069 - 1077 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:200809355 | |
Published online | 09 July 2008 |
The flaring and quiescent components of the solar corona
1
Dipartimento di Scienze Fisiche ed Astronomiche, Sezione di Astronomia, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy e-mail: [argi;peres;reale]@astropa.unipa.it
2
INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy e-mail: orlando@astropa.inaf.it
Received:
5
January
2008
Accepted:
30
April
2008
Context. The solar corona is a template to understand stellar activity. The Sun is a moderately active star, and its corona differs from that of active stars: for instance, active stellar coronae have a double-peaked emission measure distribution with a hot peak at
MK, while the non-flaring solar corona has one peak at
MK and, typically, much cooler plasma.
Aims. We study the average contribution of flares to the solar emission measure distribution to investigate indirectly the hypothesis that the hot peak in the of active stellar coronae is due to a large number of unresolved solar-like flares, and to infer properties about the flare distribution from nano- to macro-flares.
Methods. We measure the disk-integrated time-averaged emission measure, , of an unbiased sample of solar flares, analyzing uninterrupted GOES/XRS light curves over time intervals of one month. We obtain the
of quiescent corona for the same time intervals from Yohkoh/SXT data. To investigate how
and
vary during the solar cycle, we evaluate them at different phases of the cycle between December 1991 and April 1998.
Results. Irrespective of the solar cycle phase, appears as a peak in the distribution, and it is significantly larger than the values of
for
MK. As a result, the time-averaged
of the entire solar corona is double-peaked, with the hot peak, due to time-averaged flares, being located at temperatures similar to those of active stars, but less enhanced. The
shape supports the hypothesis that the hot
peak of active coronae is due to unresolved solar-like flares. If this is the case, quiescent and flare components should follow different scaling laws for increasing stellar activity. In the assumption that the heating of the corona is entirely due to flares, from nano- to macro-flares, then either the flare distribution or the confined plasma response to flares, or both, are bimodal.
Key words: stars: activity / stars: coronae / Sun: activity / Sun: corona / Sun: flares / Sun: X-rays, gamma rays
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.