Issue |
A&A
Volume 488, Number 2, September III 2008
|
|
---|---|---|
Page(s) | 619 - 622 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:200810205 | |
Published online | 01 July 2008 |
The magnetic field of the proto-planetary nebula candidate IRAS 19296+2227
1
Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: wouter@astro.uni-bonn.de
2
Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo, The Netherlands
3
Sterrewacht Leiden, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
Received:
16
May
2008
Accepted:
24
June
2008
Context. Magnetic fields are thought to be one of the possible mechanisms responsible for shaping the generally spherical outflow of evolved stars into often aspherical planetary nebulae. However, direct measurements of magnetic fields during the transition to the planetary nebula phase are rare.
Aims. The aim of this project is to expand the number of magnetic field measurements of stars in the (proto-)planetary nebula phase and find if the magnetic field strength is sufficient to affect the stellar outflow.
Methods. We used Very Long Baseline Array observations to measure the circular polarization due to the Zeeman splitting of 22 GHz H2O masers in the envelope of the proto-planetary nebula candidate star IRAS 19296+2227 and the planetary nebula K3-35.
Results. A strong magnetic field of
is detected in the H2O maser region of the proto-planetary nebula candidate IRAS 19296+2227. The H2O masers of
K3-35 are too weak to detect circular polarization although we do present the measurements of weak linear polarization in those masers.
Conclusions. The field measured in the masers of IRAS 19296+2227 is dynamically important and, if it is representative of the large scale field, is an important factor in driving the stellar mass loss and shaping the stellar outflow.
Key words: masers / stars: magnetic fields / polarization / stars: circumstellar matter / stars: late-type
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.