Issue |
A&A
Volume 488, Number 1, September II 2008
|
|
---|---|---|
Page(s) | 429 - 440 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361:200809461 | |
Published online | 01 July 2008 |
Simulating radiative astrophysical flows with the PLUTO code: a non-equilibrium, multi-species cooling function
Dipartimento di Fisica Generale, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy e-mail: ovidiu.tesileanu@ph.unito.it
Received:
25
January
2008
Accepted:
12
June
2008
Context. Time-dependent cooling processes are of paramount importance in the evolution of astrophysical gaseous nebulae and, in particular, when radiative shocks are present. Given the recent improvements in resolution of the observational data, simulating these processes in a more realistic manner in magnetohydrodynamic (MHD) codes will provide a unique tool for model discrimination.
Aims. The present work introduces a necessary set of tools that can be used to model radiative astrophysical flows in the optically-thin plasma limit. We aim to provide reliable and accurate predictions of emission line ratios and radiative cooling losses in astrophysical simulations of shocked flows. Moreover, we discuss numerical implementation aspects to ease future improvements and implementation in other MHD numerical codes.
Methods. The most important source of radiative cooling for our plasma conditions comes from the collisionally-excited line radiation. We evolve a chemical network, including 29 ion species, to compute the ionization balance in non-equilibrium conditions. The numerical methods are implemented in the PLUTO code for astrophysical fluid dynamics and particular attention has been devoted to resolve accuracy and efficiency issues arising from cooling timescales considerably shorter than the dynamical ones.
Results. After a series of validations and tests, typical astrophysical setups are simulated in 1D and 2D, employing both the present cooling model and a simplified one. The influence of the cooling model on structure morphologies can become important, especially for emission line diagnostic purposes.
Conclusions. The tests make us confident that the use of the presented detailed radiative cooling treatment will allow more accurate predictions in terms of emission line intensities and shock dynamics in various astrophysical setups.
Key words: radiation mechanisms: thermal / line: formation / ISM: Herbig-Haro objects / ISM: jets and outflows / methods: numerical / magnetohydrodynamics (MHD)
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.