Issue |
A&A
Volume 486, Number 3, August II 2008
|
|
---|---|---|
Page(s) | L35 - L38 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361:200810195 | |
Published online | 16 June 2008 |
Letter to the Editor
Direct simulations of a supernova-driven galactic dynamo
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: ogressel@aip.de
Received:
14
May
2008
Accepted:
9
June
2008
Context. Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Previous analytical models, based on the evolution of isolated, non-interacting supernova remnants, predicted a dominant vertical pumping that would render dynamo action improbable.
Aims. In the present work, we address the issue of vertical transport, which is thought to be the key process that inhibits dynamo action in the galactic context. We aim to demonstrate that supernova driving is a powerful mechanism to amplify galactic magnetic fields.
Methods. We conduct direct numerical simulations in the framework of resistive magnetohydrodynamics. Our local box model of the interstellar medium comprises optically-thin radiative cooling, an external gravitational potential, and background shear. Dynamo coefficients for mean-field models are measured by means of passive test fields.
Results. Our simulations show that supernova-driven turbulence in conjunction with shear leads to an exponential amplification of the mean magnetic field. We found turbulent pumping to be directed inward and approximately balanced by a galactic wind.
Key words: turbulence / magnetohydrodynamics (MHD) / ISM: supernova remnants / ISM: magnetic fields
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.