Issue |
A&A
Volume 486, Number 3, August II 2008
|
|
---|---|---|
Page(s) | L43 - L46 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361:200810165 | |
Published online | 24 June 2008 |
Letter to the Editor
From the warm magnetized atomic medium to molecular clouds
1
Laboratoire de radioastronomie, UMR 8112 du CNRS, École normale supérieure et Observatoire de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France e-mail: patrick.hennebelle@ens.fr
2
Zentrum für Astronomie der Universitat Heidelberg, Institut für Theoretische Astrophysik, 69120 Heidelberg, Germany
3
Centro de Radioastronomía y Astrofísica, Universidad Autónoma de México, Apdo Postal 3-72 Morelia, 58089, México
4
Service d'Astrophysique, CEA/DSM/DAPNIA/SAp, Centre d'Études de Saclay, l'Orme les Merisiers, 91191 Gif-sur Yvette Cedex, France
Received:
8
May
2008
Accepted:
10
June
2008
Context. It has been proposed that giant molecular complexes form at the sites of streams of diffuse warm atomic gas that collide at transonic velocities.
Aims. We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under pure hydrodynamic and ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.
Methods. We perform adaptive mesh refinement MHD simulations that, for the first time in this context, treat cooling and self-gravity self-consistently.
Results. The clouds formed in the simulations develop a highly
inhomogeneous density and temperature structure, with cold dense
filaments and clumps
condensing from converging flows of warm atomic gas. In the clouds, the
column density probability density distribution (PDF) peaks at
~ 2 1021 cm-2 and decays rapidly at higher
values; the magnetic intensity correlates weakly with density between n
~ 0.1 and 104 cm-3, and then varies roughly as
for higher
densities.
Conclusions. The global statistical properties of such molecular clouds are reasonably consistent with observational measurements. Our numerical simulations suggest that molecular clouds form by the moderately supersonic collision of warm atomic gas streams.
Key words: magnetohydrodynamics (MHD) / instabilities / ISM: kinematics and dynamics / ISM: structure / ISM: clouds
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.