Issue |
A&A
Volume 486, Number 2, August I 2008
|
|
---|---|---|
Page(s) | 637 - 646 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:200809719 | |
Published online | 27 May 2008 |
PCA detection and denoising of Zeeman signatures in polarised stellar spectra
1
LERMA, Observatoire de Paris-Meudon, 5 place de Jules Janssen, 92195, Meudon, France e-mail: Marian.Martinez@obspm.fr
2
Instituto de Astrofísica de Canarias, vía Láctea S/N, 38200, La Laguna, Spain e-mail: aasensio@iac.es
3
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: tcarroll@aip.de
4
LESIA, Observatoire de Paris-Meudon, 5 place de Jules Janssen, 92195, Meudon, France e-mail: [Julio.Ramirez;Meir.Semel]@obspm.fr
Received:
4
March
2008
Accepted:
25
April
2008
Aims. Our main objective is to develop a denoising strategy to increase the signal to noise ratio of individual spectral lines of stellar spectropolarimetric observations.
Methods. We use a multivariate statistics technique called Principal Component Analysis. The cross-product matrix of the observations is diagonalized to obtain the eigenvectors in which the original observations can be developed. This basis is such that the first eigenvectors contain the greatest variance. Assuming that the noise is uncorrelated a denoising is possible by reconstructing the data with a truncated basis. We propose a method to identify the number of eigenvectors for an efficient noise filtering.
Results. Numerical simulations are used to demonstrate that an important increase of the signal to noise ratio per spectral line is possible using PCA denoising techniques. It can be also applied for detection of magnetic fields in stellar atmospheres. We analyze the relation between PCA and commonly used techniques like line addition and least-squares deconvolution. Moreover, PCA is very robust and easy to compute.
Key words: polarization / stars: magnetic fields / methods: numerical
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.