Issue |
A&A
Volume 484, Number 3, June IV 2008
|
|
---|---|---|
Page(s) | 841 - 845 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20079327 | |
Published online | 16 April 2008 |
The solar photospheric abundance of europium
Results from CO5BOLD 3D hydrodynamical model atmospheres
1
Dipartimento di Astronomia, Università degli Studi di Bologna, Via Ranzani 1, 40127 Bologna, Italy e-mail: alessio.mucciarelli@studio.unibo.it
2
GEPI, Observatoire de Paris, CNRS UMR 8111, Université Paris Diderot, Place Jules Janssen, 92190 Meudon, France e-mail: [elisabetta.caffau;hans.ludwig;piercarlo.bonifacio]@obspm.fr
3
Centre de Recherche Astrophysique de Lyon, UMR 5574 CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France e-mail: Bernd.Freytag@ens-lyon.fr
4
Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143 Trieste, Italy
Received:
25
December
2007
Accepted:
6
March
2008
Context. Europium is an almost pure r-process element, which may be useful as a reference in nucleocosmochronology.
Aims. Determine the photospheric solar abundance using CO5BOLD 3D hydrodynamical model atmospheres.
Methods. Disc-centre and integrated-flux observed solar spectra are used. The europium abundance is derived using equivalent-width measurements. As a reference, one-dimensional model atmospheres are in addition used.
Results. The europium photospheric solar abundance (0.52 ± 0.02) agrees with previous determinations. We determine the photospheric isotopic fraction of 151Eu to be 49% ± 2.3% using the intensity spectra, and 50% ± 2.3% using the flux spectra. This compares well to the meteoritic isotopic fraction 47.8%. We explore 3D corrections for dwarfs and sub-giants in the temperature range ~5000 K to ~6500 K and solar and 1/10-solar metallicities and find them to be negligible for all models investigated.
Conclusions. Our photospheric Eu abundance agrees well with previous determinations based on 1D models. This is in line with our conclusion that 3D effects for this element are negligible in the case of the Sun.
Key words: Sun: abundances / stars: abundances / hydrodynamics
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.