Issue |
A&A
Volume 483, Number 3, June I 2008
|
|
---|---|---|
Page(s) | 815 - 830 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20079307 | |
Published online | 04 March 2008 |
Turbulent transport and its effect on the dead zone in protoplanetary discs
Astronomy Unit, Queen Mary, University of London, Mile End Road, London E1 4NS, UK e-mail: [M.Ilgner;R.P.Nelson]@qmul.ac.uk
Received:
21
December
2007
Accepted:
13
February
2008
Context. Protostellar accretion discs have cool, dense midplanes where externally originating ionisation sources such as X-rays or cosmic rays are unable to penetrate. This suggests that for a wide range of radii, MHD turbulence can only be sustained in the surface layers where the ionisation fraction is sufficiently high. A dead zone is expected to exist near the midplane, such that active accretion only occurs near the upper and lower disc surfaces. Recent work, however, suggests that under suitable conditions the dead zone may be enlivened by turbulent transport of ions from the surface layers into the dense interior.
Aims. In this paper we present a suite of simulations that examine where, and under which conditions, a dead zone can be enlivened by turbulent mixing.
Methods. We use three-dimensional, multifluid shearing box MHD simulations, which include vertical stratification, ionisation chemistry, ohmic resistivity, and ionisation due to X-rays from the central protostar. We compare the results of the MHD simulations with a simple reaction-diffusion model.
Results. The simulations show that in the absence of gas-phase heavy metals, such as magnesium, turbulent mixing has essentially no effect on the dead zone. The addition of a relatively low abundance of magnesium, however, increases the recombination time and allows turbulent mixing of ions to enliven the dead zone completely beyond a distance of 5 AU from the central star, for our particular disc model.
Conclusions. During the late stages of protoplanetary disc evolution, when small grains have been depleted and the disc surface density has decreased below its high initial value, the structure of the dead zone may be significantly altered by the action of turbulent transport. This may have important consequences for ongoing planet formation in these discs.
Key words: accretion, accretion disks / magnetohydornamics (MHD) / stars: planetary systems: protoplanetary disks / stars: planetary systems: formation
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.