Issue |
A&A
Volume 483, Number 3, June I 2008
|
|
---|---|---|
Page(s) | 875 - 885 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:200809554 | |
Published online | 26 March 2008 |
Asteroseismology in action: a test of spin-orbit synchronism in the close binary system Feige 48
1
Laboratoire d'Astrophysique de Toulouse-Tarbes, Université de Toulouse, CNRS, 14 av. E. Belin, 31400 Toulouse, France e-mail: [valerie.vangrootel;stephane.charpinet]@ast.obs-mip.fr
2
Département de Physique, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada e-mail: [fontaine;brassard]@astro.umontreal.ca
Received:
11
February
2008
Accepted:
18
March
2008
Aims. In this paper, we provide a test of spin-orbit synchronism in the close binary system Feige 48. This system is made of a rapidly pulsating subdwarf B (sdB) star with an unseen companion, most likely a white dwarf. The presence of nonradial oscillations offers the opportunity to infer the inner profile and period of rotation of the primary star through asteroseismology. This constitutes the key element for testing spin-orbit synchronism in depth, since stellar internal layers are inaccessible to traditional techniques.
Methods. We carried out a new asteroseismic analysis of Feige 48 following
the so-called “forward modeling” approach. This is done with our latest
optimization algorithms, which have been updated to incorporate the
effect of stellar rotation on pulsations, assuming various internal
rotation laws. In this analysis, the simultaneous match of all the
frequencies observed in Feige 48 leads objectively to the full
identification of the pulsation modes through the determination of the
indices k, , m. It also leads to determining the
structural and rotational parameters of Feige 48.
Results. Our optimal model, obtained with a solid-body rotation law, is
characterized by a spin period of h. This value is
remarkably similar to the system's orbital period of
h,
measured independently from radial velocity variations. We further
demonstrate that the hypothesis of differential rotation of the core –
including a fast rotating core – must be eliminated for Feige 48.
Conclusions. These results strongly imply that Feige 48 rotates as a solid body in a tidally locked system. This constitutes the first explicit demonstration of spin-orbit synchronism in a binary star by asteroseismic means.
Key words: stars: binaries: close / stars: oscillations / stars: rotation / stars: subdwarfs / stars: individual: Feige 48
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.