Issue |
A&A
Volume 482, Number 2, May I 2008
|
|
---|---|---|
Page(s) | 535 - 539 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20079259 | |
Published online | 14 February 2008 |
Detection of 6 K gas in Ophiuchus D
1
Observatory, PO Box 14, 00014 University of Helsinki, Finland e-mail: jorma.harju@helsinki.fi
2
I. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
Received:
17
December
2007
Accepted:
18
January
2008
Context. Cold cores in interstellar molecular clouds represent the very first phase in star formation. The physical conditions of these objects are studied in order to understand how molecular clouds evolve and how stellar masses are determined.
Aims. The purpose of this study is to probe conditions in the dense, starless clump Ophichus D (Oph D).
Methods. The ground-state () rotational transition of ortho-H2D+ was observed with APEX towards the density peak of Oph D.
Results. The width of the H2D+ line indicates that the kinetic temperature in the core is about 6 K. So far, this is the most direct evidence of such cold gas in molecular clouds. The observed H2D+ spectrum can be reproduced with a hydrostatic model with the temperature increasing from about 6 K in the centre to almost 10 K at the surface. The model is unstable against any increase in the external pressure, and the core is likely to form a low-mass star.
Conclusions. The results suggest that an equilibrium configuration is a feasible intermediate stage of star formation even if the larger scale structure of the cloud is thought to be determined by turbulent fragmentation. In comparison with the isothermal case, the inward decrease in the temperature makes smaller, i.e. less massive, cores susceptible to externally triggered collapse.
Key words: ISM: clouds / ISM: molecules / ISM: kinematics and dynamics / ISM: individual objects: ρ Oph, core D (L1696A) / stars: formation
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.