Issue |
A&A
Volume 481, Number 2, April II 2008
|
|
---|---|---|
Page(s) | 401 - 410 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20077765 | |
Published online | 25 January 2008 |
Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field*
1
Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg, Germany e-mail: rowell@physics.adelaide.edu.au
2
Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
3
Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia
4
Centre d'Etude Spatiale des Rayonnements, CNRS/UPS, 9 Av. du Colonel Roche, BP 4346, 31029 Toulouse Cedex 4, France
5
Landessternwarte, Universität Heidelberg, Königstuhl, 69117 Heidelberg, Germany
6
Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
7
Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
8
LUTH, UMR 8102 du CNRS, Observatoire de Paris, Section de Meudon, 92195 Meudon Cedex, France
9
DAPNIA/DSM/CEA, CE Saclay, 91191 Gif-sur-Yvette, Cedex, France
10
University of Durham, Department of Physics, South Road, Durham DH1 3LE, UK
11
Nicolaus Copernicus Astronomical Center, Warsaw, Poland
12
Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa
13
Laboratoire d'Astrophysique de Grenoble, INSU/CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
14
Laboratoire Leprince-Ringuet, IN2P3/CNRS, École Polytechnique, 91128 Palaiseau, France
15
Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3/CNRS, 9 Chemin de Bellevue, BP 110, 74941 Annecy-le-Vieux Cedex, France
16
European Associated Laboratory for Gamma-Ray Astronomy, jointly supported by CNRS and MPG
17
APC, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France, (UMR 7164 (CNRS, Université Paris VII, CEA, Observatoire de Paris).)
18
Laboratoire de Physique Théorique et Astroparticules, IN2P3/CNRS, Université Montpellier II, CC 70, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
19
Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan e-mail: mori@aserv.a.phys.nagoya-u.ac.jp
20
Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
21
Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany
22
LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 place Jussieu, 75252 Paris Cedex 5, France
23
Institute of Particle and Nuclear Physics, Charles University, V Holesovickach 2, 180 00 Prague 8, Czech Republic
24
Obserwatorium Astronomiczne, Uniwersytet Jagielloński, Kraków, Poland
25
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
26
University of Namibia, Private Bag 13301, Windhoek, Namibia
Received:
1
May
2007
Accepted:
16
January
2008
Aims. Observations of shell-type supernova remnants (SNRs) in the GeV to multi-TeV γ-ray band, coupled with those at millimetre radio wavelengths, are motivated by the search for cosmic-ray accelerators in our Galaxy. The old-age mixed-morphology SNR W 28 (distance ~2 kpc) is a prime target due to its interaction with molecular clouds along its northeastern boundary and other clouds situated nearby.
Methods. We observed the W 28 field (for ~40 h) at very high energy (VHE) γ-ray energies ( TeV) with the HESS.
Cherenkov telescopes. A reanalysis of EGRET
MeV data was also undertaken.
Results from the NANTEN 4 m telescope Galactic plane survey and other CO observations were used to
study molecular clouds.
Results. We have discovered VHE γ-ray emission (HESS J1801-233) coincident with the northeastern boundary of W 28
and a complex of sources (HESS J1800-240A, B and C) ~0.5° south of W 28 in the Galactic disc. The EGRET source
(GRO J1801-2320) is centred on HESS J1801-233 but may also be related to HESS J1800-240 given the
large EGRET point spread function.
The VHE differential photon spectra are well fit by pure power laws with indices Γ ~2.3 to 2.7. The spectral
indices of HESS J1800-240A, B, and C are consistent within statistical errors.
All VHE sources are ~10′ in intrinsic radius except for HESS J1800-240C, which appears pointlike.
The NANTEN 12CO() data reveal molecular clouds positionally associating with the
VHE emission, spanning a ~15 km s-1 range in local standard of rest velocity.
Conclusions. The VHE/molecular cloud association could indicate a hadronic origin for HESS J1801-233 and HESS J1800-240, and several cloud components in projection may contribute to the VHE emission. The clouds have components covering a broad velocity range encompassing the distance estimates for W 28 (~2 kpc) and extending up to ~4 kpc. Assuming hadronic origin and distances of 2 and 4 kpc for cloud components, the required cosmic-ray density enhancement factors (with respect to the solar value) are in the range ~10 to ~30. If situated at 2 kpc distance, such cosmic-ray densities may be supplied by SNRs like W 28. Additionally and/or alternatively, particle acceleration may come from several catalogued SNRs and SNR candidates, the energetic ultra compact HII region W 28A2, and the HII regions M 8 and M 20, along with their associated open clusters. Further sub-mm observations would be recommended to probe in detail the dynamics of the molecular clouds at velocites > 10 km s-1 and their possible connection to W 28.
Key words: gamma rays: observations
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.