Issue |
A&A
Volume 479, Number 2, February IV 2008
|
|
---|---|---|
Page(s) | 427 - 452 | |
Section | Galactic structure, stellar clusters, and populations | |
DOI | https://doi.org/10.1051/0004-6361:20078723 | |
Published online | 12 December 2007 |
Full calculation of clumpiness boost factors for antimatter cosmic rays
in the light of
CDM N-body simulation results*
Abandoning hope in clumpiness enhancement?
1
Centre de Physique des Particules (), CNRS-IN2P3, Université de la Méditerranée, 163 avenue de Luminy, case 902, 13288 Marseille Cedex 09, France e-mail: lavalle@in2p3.fr
2
Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918-3, Beijing 100049, PR China e-mail: [yuanq;bixj]@mail.ihep.ac.cn
3
Laboratoire de Physique Nucléaire et Hautes Énergies (), CNRS-IN2P3, Universités Paris VI et Paris VII, 4 place Jussieu, Tour 33, 75252 Paris Cedex 05, France e-mail: dmaurin@lpnhe.in2p3.fr
Received:
23
September
2007
Accepted:
27
November
2007
Context.Anti-proton and positron Galactic cosmic ray spectra are among the key targets for indirect detection of dark matter. The boost factors, corresponding to an enhancement of the signal, and linked to the clumpiness properties of the dark matter distribution, have been taken as high as thousands in the past. The dramatic impact of these boost factors for indirect detection of antiparticles, for instance with the PAMELA satellite or the coming AMS-02 experiment, asks for their detailed calculation.
Aims.We take into account the state-of-the-art results of high resolution N-body dark matter simulations to calculate the most likely energy dependent boost factors, which are linked to the cosmic ray propagation properties, for anti-protons and positrons. The results from extreme, but still possible, configurations of the clumpy dark matter component are also discussed.
Methods.Starting from the mass and space distributions of sub-halos, the anti-proton and positron propagators are used to calculate the mean value and the variance of the boost factor for the primary fluxes. We take advantage of the statistical method introduced in Lavalle et al. (2007) and cross-check the results with Monte Carlo computations.
Results.By spanning some extreme configurations of sub-halo and propagation properties, we find that the average contribution of the clumps is negligible compared to that of the smooth dark matter component. Dark matter clumps do not lead to enhancement of the signals, unless they are taken with some extreme (unexpected) properties. This result is independent of the nature of the self-annihilating dark matter candidate considered, and provides precise estimates of the theoretical and the statistical uncertainties of the antimatter flux from sub-halos.
Conclusions.Spectral distortions can still be expected in antimatter flux measurements,
but scenarios invoking large and even mild clumpiness boost factors are
strongly disfavoured by our analysis. Some very extreme configurations could
still lead to large enhancements, e.g. (i) very small clumps with masses
following a
mass
distribution with
, highly concentrated with internal
profiles with
,
and spatially distributed according to the smooth component; or (ii) a big
sub-halo of mass
within a distance of
1
kpc from the Earth. However, they are very unlikely from either theoretical
or statistical arguments.
Key words: cosmology: dark matter
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.