Issue |
A&A
Volume 479, Number 1, February III 2008
|
|
---|---|---|
Page(s) | 161 - 166 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20078212 | |
Published online | 04 December 2007 |
Luminosity, selfgravitation and nonuniqueness of stationary accretion
1
M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland e-mail: malec@th.if.uj.edu.pl
2
Max Planck Institute for Gravitational Physics (AEI), Am Mühlenberg 1, 14-476 Potsdam, Germany
Received:
3
July
2007
Accepted:
24
October
2007
Aims.We show the existence of two branches of solutions bifurcating from a point with maximal luminosity.
Methods.We investigate a Newtonian description of accreting compact bodies with hard surfaces, including luminosity and selfgravitation of polytropic perfect fluids. This nonlinear integro-differential problem is studied numerically. Its reduced version simplifies (under appropriate boundary conditions) to an algebraic relation between luminosity and the gas abundance in stationary, spherically symmetric flows and it can be dealt with analytically.
Results.There exist – for a given luminosity, asymptotic mass and asymptotic temperature – two sub-critical solutions that bifurcate from an extremal point. They differ by the fluid content and the mass of the compact centre. Their relevance to Thorne-Żytkow stars is discussed.
Key words: accretion, accretion disks / hydrodynamics / gravitation / instabilities
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.