Issue |
A&A
Volume 478, Number 2, February I 2008
|
|
---|---|---|
Page(s) | 371 - 385 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20078344 | |
Published online | 04 December 2007 |
Heating of blue compact dwarf galaxies: gas distribution and photoionization by stars in I Zw 18*
LUTH, Observatoire de Paris, CNRS, Université Paris Diderot; 5 place Jules Janssen, 92190 Meudon, France e-mail: Daniel.Pequignot@obspm.fr
Received:
24
July
2007
Accepted:
31
October
2007
Aims.Photoionization models so far are unable to account for the high electron
temperature Te([]) implied by the line intensity ratio
[
]λ4363 Å/[
]λ5007 Å in
low-metallicity blue compact dwarf galaxies, casting doubt on the
assumption of photoionization by hot stars as the dominant source of heating
of the gas in these objects of large cosmological significance.
Methods.Combinations of runs of the 1D photoionization code NEBU are used to explore
alternative models for the prototype giant region shell
I Zw 18 NW, with no reference to the filling factor concept and with
due consideration for geometrical and stellar evolution constraints.
Results.Acceptable models for I Zw 18 NW are obtained, which represent schematically an incomplete shell comprising radiation-bounded condensations embedded in a low-density matter-bounded diffuse medium. The thermal pressure contrast between gas components is about a factor 7. The diffuse phase can be in pressure balance with the hot superbubble fed by mechanical energy from the inner massive star cluster. The failure of previous models is ascribed to (1) the adoption of an inadequate small-scale gas density distribution, which proves critical when the collisional excitation of hydrogen contributes significantly to the cooling of the gas, and possibly (2) a too restrictive implementation of Wolf-Rayet stars in synthetic stellar cluster spectral energy distributions. A neutral gas component heated by soft X-rays, whose power is less than 1% of the star cluster luminosity and consistent with CHANDRA data, can explain the low-ionization fine-structure lines detected by SPITZER. [O/Fe] is slightly smaller in I Zw 18 NW than in Galactic Halo stars of similar metallicity and [C/O] is correlatively large.
Conclusions.Extra heating by, e.g., dissipation of mechanical energy is not
required to explain Te([]) in I Zw 18. Important
astrophysical developments depend on the 5% uncertainty attached
to [
] collision strengths.
Key words: galaxies: individual: I Zw 18 / galaxies: starburst / ISM: HII regions / stars: early-type / stars: Wolf-Rayet / atomic data
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.