Issue |
A&A
Volume 478, Number 1, January IV 2008
|
|
---|---|---|
Page(s) | 155 - 162 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20078328 | |
Published online | 20 November 2007 |
Accretion funnels onto weakly magnetized young stars
1
Laboratoire d'Astrophysique de Grenoble, Université Joseph Fourier, CNRS UMR5571, France
2
Centre for Plasma Astrophysics, K.U. Leuven, Belgium
3
FOM Institute for Plasma Physics, Rijnhuizen, The Netherlands
4
Astronomical Institute, Utrecht University, The Netherlands
Received:
20
July
2007
Accepted:
11
November
2007
Aims. We re-examine the conditions required to steadily deviate an accretion flow from a circumstellar disc into a magnetospheric funnel flow onto a slow rotating young forming star.
Methods. New analytical constraints on the formation of accretion funnels flows due to the presence of a dipolar stellar magnetic field disrupting the disc are derived. The Versatile Advection Code is used to confirm these constraints numerically. Axisymmetric MHD simulations are performed, where a stellar dipole field enters the resistive accretion disc, whose structure is self-consistently computed.
Results.
The analytical criterion derived allows to predict a priori the
position of the truncation radius from a non perturbative accretion
disc model.
Accretion funnels are found to be robust features which occur
below the co-rotation radius, where the stellar poloidal magnetic
pressure becomes both at equipartition with the disc thermal pressure
and is comparable to the disc poloidal ram pressure.
We confirm the results of Romanova et al. (2002, ApJ, 578, 420) and find accretion
funnels for stellar dipole fields as low as 140 G in the low
accretion rate limit of 10-9 yr-1.
With our present numerical setup with no disc magnetic field, we found no evidence of winds, neither disc driven nor X-winds, and the star is only spun up by its interaction with the disc.
Conclusions.
Weak dipole fields, similar in magnitude to those observed, lead to the development of accretion funnel flows in weakly accreting T Tauri stars. However, the higher accretion observed for most
T Tauri stars ( ~ 10-8
yr-1) requires either larger stellar field strength and/or different magnetic topologies to allow for magnetospheric accretion.
Key words: accretion, accretion disks / magnetohydrodynamics (MHD) / methods: numerical / stars: pre-main sequence
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.