Issue |
A&A
Volume 476, Number 3, December IV 2007
|
|
---|---|---|
Page(s) | 1243 - 1260 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20077843 | |
Published online | 28 August 2007 |
The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X
1
Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, DAPNIA/Service d'Astrophysique, Bât. 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France e-mail: motte@cea.fr
2
California Institute of Technology, Downs Laboratory of Physics, Mail Stop 320-47, 1200 E California Blvd, Pasadena, CA 91125, USA
3
OASU/LAB-UMR 5804, CNRS, Université Bordeaux 1, 2 rue de l'Observatoire, BP 89, 33270 Floirac, France
4
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
5
I. Physik. Institut, Universität Köln, 50937 Köln, Germany
6
IRAM, 300 rue de la Piscine, 38406 Saint Martin d'Hères, France
Received:
10
May
2007
Accepted:
20
July
2007
Aims.Our current knowledge of high-mass star formation is mainly based on follow-up studies of bright sources found by IRAS, and is thus biased against its earliest phases, inconspicuous at infrared wavelengths. We therefore started searching, in an unbiased way and in the closest high-mass star-forming complexes, for the high-mass analogs of low-mass pre-stellar cores and class 0 protostars.
Methods.We have made an extensive 1.2 mm continuum mosaicing study of the Cygnus X molecular cloud complex using the MAMBO cameras at the IRAM 30 m telescope. The imaged areas cover all the high-column density (AV ≥ 15 mag) clouds of this nearby (~1.7 kpc) cloud complex actively forming OB stars. We then compared our millimeter maps with mid-infrared images, and have made SiO(2-1) follow-up observations of the best candidate progenitors of high-mass stars.
Results.Our complete study of Cygnus X with ~0.09 pc resolution provides, for the first time, an unbiased census of massive young stellar objects. We discover 129 massive dense cores (FWHM size ~0.1 pc, = 4-950
, volume-averaged density ~105 cm-3), among which ~42 are probable precursors of high-mass stars. A large fraction of the Cygnus X dense cores (2/3 of the sample) remain undetected by the MSX satellite, regardless of the mass range considered. Among the most massive (≥40
) cores, infrared-quiet objects are driving powerful outflows traced by SiO emission. Our study qualifies 17 cores as good candidates for hosting massive infrared-quiet protostars, while up to 25 cores potentially host high-luminosity infrared protostars. We fail to discover the high-mass analogs of pre-stellar dense cores (~0.1 pc, > 104 cm-3) in Cygnus X, but find several massive starless clumps (~ 0.8 pc, 7
103 cm-3) that might be gravitationally bound.
Conclusions.Since our sample is derived from a single molecular complex and covers every embedded phase of high-mass star formation, it gives the first statistical estimates of their lifetime. In contrast to what is found for low-mass class 0 and class I phases, the infrared-quiet protostellar phase of high-mass stars may last as long as their better-known high-luminosity infrared phase. The statistical lifetimes of high-mass protostars and pre-stellar cores (~ 3 104 yr and < 103 yr) in Cygnus X are one and two order(s) of magnitude smaller, respectively, than what is found in nearby, low-mass star-forming regions. We therefore propose that high-mass pre-stellar and protostellar cores are in a highly dynamic state, as expected in a molecular cloud where turbulent processes dominate.
Key words: dust, extinction / H ii regions / ISM: structure / stars: formation / submillimeter
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.