Issue |
A&A
Volume 476, Number 3, December IV 2007
|
|
---|---|---|
Page(s) | 1341 - 1346 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20077660 | |
Published online | 09 October 2007 |
Oxygen temperature anisotropy and solar wind heating
above coronal holes out to 5 R
1
Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy e-mail: telloni@to.infn.it
2
University of Torino, via P. Giuria 1, 10125 Torino, Italy
Received:
18
April
2007
Accepted:
12
September
2007
The purpose of the paper is to measure the degree of temperature anisotropy of the oxygen ions in the outer corona. The ratio of the Doppler dimmed O VI 1037-1032 line intensity as a function of the velocity of the fast solar wind, computed for typical values of coronal density, is consistent with the observed ratio, only when a significant temperature anisotropy is established in polar coronal holes. The oxygen ion velocity distribution is constrained to be bi-Maxwellian from 2 to 3.7
, where the lowest degree of anisotropy compatible with the observational data increases up to ~7 at 2.9
, proving that the oxygen ions are accelerated across the magnetic field, in accordance with a preferential energy deposition perpendicular to the field lines, consistent with the process of ion-cyclotron dissipation of Alfvén waves. The most plausible evolution of the velocity distribution of the O+5 ions departs from the bi-Maxwellian configuration at 2
, according to an anisotropy ratio that reaches its maximum value
~14 at 2.9
, and further out approaches isotropy, at 3.7
. In response to the acceleration across the field, energy redistribution along the magnetic field lines accelerates the oxygen component of the solar wind to velocities of 760 km s-1 at 5
. The variation of the anisotropy ratio with the heliocentric distance might be satisfactorily explained by theoretical models of the fast solar wind heating based on the oxygen cyclotron instability or the fast shock mechanism. The observations of the extended corona analyzed in this paper are performed with the Ultraviolet Coronagraph Spectrometer on board the Solar Heliospheric Observatory, during the solar minimum activity period 1996–1997.
Key words: Sun: corona / Sun: UV radiation / Sun: solar wind
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.