Issue |
A&A
Volume 476, Number 1, December II 2007
|
|
---|---|---|
Page(s) | 291 - 300 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20078502 | |
Published online | 09 October 2007 |
Formation, fractionation, and excitation of carbon monoxide in diffuse clouds
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903-2475, USA e-mail: hliszt@nrao.edu
Received:
18
August
2007
Accepted:
3
October
2007
Context.A wealth of observations of CO in absorption in diffuse clouds has accumulated in the past decade at uv and mm-wavelengths
Aims.Our aims are threefold: a) To compare the uv and mm-wave results;
b) to interpret 13CO and 12CO abundances in terms of the physical
processes which separately and jointly determine them; c) to interpret
observed rotational excitation and line brightness in
terms of ambient gas properties.
Methods.A simple phenomenological model of CO formation as the immediate descendant of quiescently-recombining HCO+ is used to study the accumulation, fractionation and rotational excitation of CO in more explicit and detailed models of H2-bearing diffuse/H I clouds
Results.The variation of N(CO) with N(H2) is explained by quiescent
recombination of a steady fraction n(HCO+)/n(H2) = 2 10-9.
Observed N(12CO))/N(13CO) ratios generally do not require a special
chemistry but result from competing processes and do not
provide much insight into the local gas properties, especially the
temperature.
CO line brightnesses directly represent N(CO),
not N(H2), so the CO-H2 conversion factor varies widely; it
attains typical values at N(12CO)
1016 cm-2.
Models of CO rotational excitation account for the line
brightnesses and CO-H2conversion factors but readily reproduce
the observed excitation temperatures
and optical depths of the rotational transitions only if excitation
by H-atoms is weak – as seems to be the case for the very most recent
calculations of these excitation rates.
Conclusions.Mm-wave and uv results generally agree well but the former
show somewhat more enhancement of 13C in 13CO. In any case,
fractionation may seriously bias 12C/13C ratios measured in
CO and other co-spatial molecules. Complete C CO conversion
must occur over a very narrow range of AV and N(H2) just beyond
the diffuse regime. For N(H2) < 7
1019 cm-2the character
of the chemistry changes inasmuch as CH is generally undetected while
CO suffers no such break.
Key words: astrochemistry / molecular processes / ISM: clouds / ISM: molecules
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.