Issue |
A&A
Volume 476, Number 1, December II 2007
|
|
---|---|---|
Page(s) | 1 - 8 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20078088 | |
Published online | 24 September 2007 |
Nonlinear radiative cooling of relativistic particles under equipartition conditions
I. Instantaneous monoenergetic injection
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany e-mail: rsch@tp4.ruhr-uni-bochum.de
Received:
14
June
2007
Accepted:
4
September
2007
Context.In powerful cosmic nonthermal radiation sources with dominant magnetic-field self generation, the generation of magnetic fields at almost equipartition strength by relativistic plasma instabilities operates as fast as the acceleration or injection of ultra-high energy radiating electrons and hadrons in these sources. Consequently, the magnetic field strength becomes time-dependent and adjusts itself to the actual kinetic energy density of the radiating electrons in these sources. This coupling of the magnetic field and the magnetic field energy density to the kinetic energy of the radiating particles changes both the synchrotron emissivity and the intrinsic temporal evolution of the relativistic particle energy spectrum after injection.
Aims.The nonlinear kinetic equation for the intrinsic temperoral evolution of relativistic electrons is solved for the case of instantaneous injection of monoenergetic particles.
Methods.Analytical derivations and graphical illustrations.
Results.In blazar and gamma-ray burst sources, the nonlinear synchrotron cooling of each particle under equipartition conditions is then orders of magnitude quicker than the linear cooling behaviour in constant magnetic-field strength sources. This dramatic reduction for the intrinsic radiation loss time may be essential for understanding the observed rapid time variation, of the order of days in the case of the non-blazar radio galaxy M 87 and minutes in flaring blazar jets such as PKS 2155-304. Significant differences in the optically-thin, synchrotron spectral distributions at different times and in the synchrotron light curves at different frequencies are predicted.
Key words: radiation mechanisms: non-thermal / galaxies: active / cosmic rays / magnetic fields
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.