Issue |
A&A
Volume 475, Number 2, November IV 2007
|
|
---|---|---|
Page(s) | 479 - 485 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20077366 | |
Published online | 17 September 2007 |
Luminous HC3N line and the HCN/HCO+ ratio in NGC 4418
Buried AGN or nascent starburst?
1
Onsala Space Observatory, S-439 94 Onsala, Sweden e-mail: [susanne;raquel]@oso.chalmers.se
2
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Received:
27
February
2007
Accepted:
27
June
2007
Aims.We investigate the properties of the nuclear molecular gas and address the nature of the deeply buried source driving the IR emission of NGC 4418.
Methods.We present IRAM 30 m observations and basic non-LTE, single component radiative transport modelling of HNC, HCN, HCO+, CN, HC3N, and H2CO
Results.We find that NGC 4418 has a rich molecular chemistry – including unusually luminous HC3N –9, 16–15,and 25–24 line emission – compared to the other high density tracers. We furthermore detect: ortho-H2CO 2–1, 3–2; CN 1–0, 2–1; HCO+, 1–0. 3–2,
HCN 3–2, HNC 1–0, 3–2, and tentatively OCS 12–11.
The HCN, HCO+, H2CO, and CN line emission can be fitted to
densities of n = 5
10
105 cm-3 and gas temperatures Tk = 80–150 K.
Both HNC and HC3N are, however, significantly more
excited than the other species, which requires higher gas densities or radiative excitation through
mid-IR pumping.
The HCN line intensity is fainter than that of HCO+ and HNC for the 3–2 transition,
in contrast to previous findings for the 1–0 lines, where the HCN emission is the most luminous.
Assuming all line emission is emerging from the same gas, abundances of the observed species are
estimated to be similar to each other within
factors of 2–5. The most noteworthy of these is the high abundance of HC3N and a small-to-moderate
abundance ratio between HCN and HCO+.
Conclusions.We tentatively suggest that the observed molecular line emission is consistent with a young starburst, where the emission can be understood as emerging from dense, warm gas with an additional PDR component. We find that X-ray chemistry is not required to explain the observed mm-line emission, including the HCN/HCO+ 1–0 and 3–2 line ratios. The luminous HC3N line emission is an expected signature of dense, starforming gas. A deeply buried AGN cannot be excluded, but its impact on the surrounding molecular medium is then suggested to be limited. However, detailed modelling of HC3N abundances in X-ray dominated regions (XDRs) should be carried out. The possibility of radiative excitation should also be investigated further.
Key words: galaxies: evolution / galaxies: individual: NGC 4418 / galaxies: starburst / galaxies: active / radio lines: ISM / ISM: molecules
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.