Issue |
A&A
Volume 474, Number 3, November II 2007
|
|
---|---|---|
Page(s) | 997 - 1013 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20066311 | |
Published online | 23 October 2007 |
Solar wind originating in funnels: fast or slow?
1
Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029, Blindern, 0315 Oslo, Norway e-mail: a.m.janse@astro.uio.no
2
Centre of Mathematics for Applications, University of Oslo, Norway
3
Norwegian Defence Research Establishment, PO Box 25, 2027 Kjeller, Norway
4
High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado, USA
Received:
29
August
2006
Accepted:
26
July
2007
Aims.We model a hydrogen-helium solar wind originating in funnels, regions of rapid flux tube expansion at the base of the solar corona.
Methods.The time-dependent model describes the particle density, flow speed, temperature parallel and perpendicular to the magnetic field, and the heat flow for each ionization state of hydrogen and helium, and for electrons.
Results.For a large range of heating parameters, the funnel has two co-existing solutions: both a slow and a fast solar wind solution result from the same heating parameters, depending on the initial state from which the model was started. Though the fast and the slow solar wind can co-exist it is difficult to change from a fast solar wind to a slow solar wind or vice versa. A significant change in the heating parameters is required to “flip” the solution, and it takes a long time, about one month, to reach the other steady state solution. When either the funnel or helium is removed from the model, we no longer have two co-existing states.
Key words: solar wind / Sun: corona / Sun: abundances / Sun: transition region / hydrodynamics
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.