Issue |
A&A
Volume 474, Number 2, November I 2007
|
|
---|---|---|
Page(s) | 609 - 615 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20077648 | |
Published online | 06 August 2007 |
Coronal ion-cyclotron beam instabilities within the multi-fluid description
Max-Planck Institut für Sonnensystemforschung, Max-Planck Strasse 2, 37191 Katlenburg-Lindau, Germany e-mail: mecheri@mps.mpg.de
Received:
15
April
2007
Accepted:
26
June
2007
Context.Spectroscopic observations and theoretical models suggest resonant wave-particle interactions, involving high-frequency ion-cyclotron waves, as the principal mechanism for heating and accelerating ions in the open coronal holes. However, the mechanism responsible for the generation of the ion-cyclotron waves remains unclear. One possible scenario is that ion beams originating from small-scale reconnection events can drive micro-instabilities that constitute a possible source for the excitation of ion-cyclotron waves.
Aims.We use the multi-fluid model in the low-β coronal plasma to study ion beam-driven electromagnetic instabilities. By neglecting the electron inertia this model allows one to take into account ion-cyclotron wave effects that are absent from the one-fluid magnetohydrodynamics (MHD) model. Realistic models of density and temperature as well as a 2-D analytical magnetic field model are used to define the background plasma in the open-field funnel region of a polar coronal hole.
Methods.Taking into account the WKB (Wentzel-Kramers-Brillouin) approximation, a Fourier plane-wave linear mode analysis is employed to derive the dispersion relation. The ray-tracing theory is used to compute the ray path of the unstable wave as well as the evolution of the growth rate of the wave while propagating in the coronal funnel.
Results.We demonstrate that in typical coronal hole conditions and assuming realistic values of the beam velocity, the free energy provided by the ion beam propagating parallel to the ambient field can drive micro-instabilities through resonant ion-cyclotron excitation.
Key words: Sun: corona / waves / instabilities
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.