Issue |
A&A
Volume 473, Number 2, October II 2007
|
|
---|---|---|
Page(s) | 661 - 672 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20078131 | |
Published online | 30 July 2007 |
Atmospheric deceleration and light curves of Draconid meteors and implications for the structure of cometary dust
Astronomical Institute of the Academy of Sciences, Fričova 298, 25165 Ondřejov Observatory, Czech Republic e-mail: borovic@asu.cas.cz
Received:
21
June
2007
Accepted:
17
July
2007
Aims.The observation of Draconid meteors was used to infer information on the structure, porosity, strength, and composition of the dust of comet 21P/Giacobini-Zinner.
Methods.Stereoscopic video and photographic observations of six faint and one bright Draconid meteors provided meteor morphologies, heights, light curves, and atmospheric decelerations. The spectrum of the bright meteor was also obtained. We developed a simple model of meteoroid ablation and fragmentation. The model assumes that cometary meteoroids are composed of constituent grains.
Results.By fitting the observed decelerations and light curves, we have found that the grain mass range
was relatively narrow in all meteoroids but differed from case to case. Some meteoroids were coarse
grained with grain masses 10-9 to 10-10 kg, others were fine grained with grain masses
one order of magnitude lower. Individual mm-sized meteoroids contained tens of thousands to
almost a million grains (assuming grain density close to 3000 kg m-3).
The meteoroids were porous aggregates of grains, having porosities of
about 90% and bulk densities of 300 kg m-3. Grain separation started after the surface
of the meteoroid received energy of 106 J m-2.
The separation continued during the first half of meteor trajectories. We call this phase erosion.
The energy needed for grain erosion was 15-30 lower than the energy of vaporization.
However, 30% of the largest meteoroid was resistant to thermal erosion;
this part disrupted later mechanically under a very low dynamic pressure of 5 kPa.
The relative abundances of Na, Mg, and Fe
were nearly chondritic, but differential ablation caused preferential loss of sodium
at the beginning of the trajectory.
Key words: meteors, meteoroids / comets: individual: 21P/Giacobini-Zinner
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.