Issue |
A&A
Volume 473, Number 1, October I 2007
|
|
---|---|---|
Page(s) | 329 - 342 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20077666 | |
Published online | 16 July 2007 |
On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks
1
Astronomy Unit School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK e-mail: wilhelm.kley@uni-tuebingen.de
2
Institut für Astronomie & Astrophysik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
Received:
18
April
2007
Accepted:
11
July
2007
Context.Young planets embedded in their protoplanetary disk interact gravitationally with it leading to energy and angular momentum exchange. This interaction determines the evolution of the planet through changes to the orbital parameters.
Aims.We investigate changes in the orbital elements of a 20 Earth-mass planet due to the torques from the disk. We focus on the non-linear evolution of initially non-vanishing eccentricity, e, and/or inclination, i.
Methods.We treat the disk as a two- or three-dimensional viscous fluid and perform hydrodynamical simulations using finite difference methods. The planetary orbit is updated according to the gravitational torque exerted by the disk. We monitor the time evolution of the orbital elements of the planet.
Results.We find
rapid exponential decay of the planet orbital eccentricity and inclination
for small initial values of e and i, in agreement with linear theory.
For larger values of the decay time increases
and the decay rate scales as
, consistent
with existing theoretical models.
For large inclinations (
) the inclination decay rate
shows an identical scaling d
.
We find an interesting dependence of the migration on the eccentricity.
In a disk with aspect ratio
the
migration rate is enhanced for small non-zero eccentricities (
),
while for larger values we see a significant reduction by a factor
of ~4.
We find no indication for a reversal of the migration for large e,
although the torque experienced by the planet becomes positive when
. This inward migration is caused by the
persisting energy loss of the planet.
Conclusions.For non gap forming planets,
eccentricity and inclination damping occurs on a time scale
that is very much shorter than the migration time scale.
The results of non linear hydrodynamic simulations are in very
good agreement with linear theory for values of e and i
for which the theory is applicable
(i.e. e and ).
Key words: accretion, accretion disks / hydrodynamics / methods: numerical / planetary systems: formation
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.