Issue |
A&A
Volume 471, Number 1, August III 2007
|
|
---|---|---|
Page(s) | 289 - 293 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20077596 | |
Published online | 12 June 2007 |
Unstable drift mode driven by shear plasma flow in solar spicules
1
Theoretical Plasma Physics Division, PINSTECH, PO Nilore, Islamabad, Pakistan
2
Center for Plasma Astrophysics, K.U. Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium e-mail: Jovo.Vranjes@wis.kuleuven.be
3
Faculté des Sciences Appliquées, avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
Received:
3
April
2007
Accepted:
15
May
2007
Context.The lower solar atmosphere contains at any moment a large number of spicules
comprising plasma that moves towards the upper layers with typical axial
velocities of km s-1. It is expected that these flows as well as the
plasma density are inhomogeneous in the perpendicular direction. The presence
of such a density gradient implies the existence of drift waves, while the
inhomogeneity of the flow velocity can cause the growth of such modes.
Aims.The stability of the drift waves will be discussed within the two-fluid theory taking into account the ion temperature and the stress tensor effects.
Methods.An analytical linear normal mode analysis is used within the local approximation.
Results.A detailed derivation of the hot ion contribution is performed. A dispersion equation is derived and the stability/instability conditions are discussed in detail for the parameter range appropriate for solar spicules. The drift mode appears to be highly unstable for typical spicule characteristic lengths of the density and the shear flow gradients, i.e. in the range of a few hundred meters up to a few kilometers, yielding wave frequencies of the order of a few Hz.
Conclusions.Hence, the waves and the instabilities develop at reasonable time scales regarding the life times of spicules that are measured in minutes.
Key words: Sun: chromosphere / waves / instabilities
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.