Issue |
A&A
Volume 470, Number 2, August I 2007
|
|
---|---|---|
Page(s) | 639 - 652 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20077485 | |
Published online | 25 May 2007 |
Comparative study of complex N- and O-bearing molecules in hot molecular cores *,**
1
INAF, Istituto di Radioastronomia, CNR, Via Gobetti 101, 40129 Bologna, Ital e-mail: ffontani@ira.inaf.it
2
Steward Observatory, The University of Arizona, Tucson, AZ 85721, USA
3
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS42, Cambridge, MA 02138, USA
4
INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
5
Max-Planck-Insitut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn, Germany
Received:
15
March
2007
Accepted:
11
May
2007
Aims.We have observed several emission lines of two Nitrogen-bearing (C2H5CN and C2H3CN) and two Oxygen-bearing (CH3OCH3 and HCOOCH3) molecules towards a sample of well-known hot molecular cores (HMCs) in order to check whether the chemical differentiation seen in the Orion-HMC and W3(H2O) between O- and N-bearing molecules is a general property of HMCs.
Methods.With the IRAM-30m telescope we have observed 12 HMCs in 21 bands, centered at frequencies from 86 250 to 258 280 MHz.
Results.In six sources,
we have detected a number of transitions sufficient to derive their
main physical properties. The rotational temperatures obtained
from C2H5CN, C2H3CN and CH3OCH3 range from
~100 to ~150 K in these HMCs. The total column densities of these
molecules are of the order of ~1015-1017cm-2.
Single Gaussian fits performed to unblended lines show a marginal
difference in the line peak velocities of the C2H5CN and CH3OCH3 lines,
indicating a possible spatial separation between the region
traced by the two molecules. On the
other hand, neither the linewidths nor the rotational temperatures
and column densities confirm such a result.
The average molecular abundances of
C2H5CN, C2H3CN and CH3OCH3 are in the range ~10-9-10-10,
comparable to those seen in the Orion hot core. In other
HMCs Bisschop et al. 2007 found comparable values
for C2H5CN but values ~2.5 times larger for CH3OCH3.
By comparing the
abundance ratio of the pair C2H5CN/C2H3CN with the predictions
of theoretical models, we derive that the age of our cores ranges
between 3.7 and 5.9 104 yr.
Conclusions.The abundances of C2H5CN and C2H3CN are strongly correlated, as expected from theory which predicts that C2H3CN is formed through gas phase reactions involving C2H5CN . A correlation is also found between the abundances of C2H5CN and CH3OCH3, and C2H3CN and CH3OCH3. In all tracers the fractional abundances increase with the H2 column density while they are not correlated with the gas temperature. On average, the chemical and physical differentiation between O- and N-bearing molecules seen in Orion and W3(H2O) is not revealed by our observations. We believe that this is partly due to the poor angular resolution of our data, which allows us to derive only average values over the sources of the discussed parameters.
Key words: stars: formation / radio lines: ISM / ISM: molecules
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.