Issue |
A&A
Volume 470, Number 1, July IV 2007
|
|
---|---|---|
Page(s) | 269 - 279 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20077094 | |
Published online | 16 May 2007 |
A jet-like outflow toward the high-mass (proto) stellar object IRAS 18566+0408
1
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA e-mail: qzhang@cfa.harvard.edu
2
National Radio Astronomical Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA
3
Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
4
Max-Planck-Institut für Radioastronomie, Auf dem Hugel 69, 53121 Bonn, Germany
Received:
12
January
2007
Accepted:
11
April
2007
Context.Studies of high-mass protostellar objects reveal important information regarding the formation process of massive stars.
Aims. We study the physical conditions in the dense core and molecular outflow associated with the high-mass protostellar candidate IRAS 18566+0408 at high angular resolution.
Methods.We performed interferometric observations in the
and (3,3) inversion transitions, the SiO
–1
and HCN
–0 lines, and the 43 and 87 GHz continuum emission using
the VLA and OVRO.
Results.The 87 GHz
continuum emission reveals two continuum peaks MM-1 and MM-2 along a
molecular ridge. The dominant peak MM-1 coincides with a compact
emission feature at 43 GHz, and arises mostly from the dust
emission. For dust emissivity index β of 1.3,
the masses in the dust peaks amount to 70 for MM-1, and
27
for MM-2. Assuming internal heating,
the central luminosities of MM-1 and MM-2 are
and
, respectively.
The SiO emission reveals a well collimated outflow emanating from
MM-1. The jet-like outflow is also detected in
at velocities
similar to the SiO emission. The outflow, with a mass of 27
,
causes significant heating in the gas to temperatures of 70 K, much
higher than the temperature of
K in the extended core.
Compact (
) and narrow line (<1.5 km s-1)
(3,3) emission
features are found associated with the outflow. They likely arise
from weak population inversion in
similar to the maser emission.
Toward MM-1, there is a compact
structure with a linewidth
that increases from 5.5 km s-1 FWHM measured at 3'' resolution to
8.7 km s-1 measured at 1'' resolution. This linewidth is much
larger than the FWHM of <2 km s-1 in the entire core, and does not
appear to originate from the outflow. This large linewidth may arise
from rotation/infall, or relative motions of unresolved protostellar
cores.
Key words: ISM: kinematics and dynamics / ISM: H II regions / ISM: clouds / masers / ISM: jets and outflows / stars: formation
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.