Issue |
A&A
Volume 470, Number 1, July IV 2007
|
|
---|---|---|
Page(s) | 11 - 19 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20066068 | |
Published online | 10 May 2007 |
Enhanced activity of massive black holes by stellar capture assisted by a self-gravitating accretion disc
1
Astronomical Institute, Academy of Sciences, Boční II 1401, 14131 Prague, Czech Republic e-mail: vladimir.karas@cuni.cz
2
Charles University, Faculty of Mathematics and Physics, Astronomical Institute, V Holešovičkách 2, 18000 Prague, Czech Republic
Received:
19
July
2006
Accepted:
15
April
2007
Aims.We study the probability of close encounters between stars from a nuclear
cluster and a massive black hole (104; ). The
gravitational field of the system is dominated by the black hole
in its sphere of influence. It is further modified by the cluster mean
field (a spherical term) and a gaseous disc/torus
(an axially symmetric term)
causing a secular evolution of stellar orbits via Kozai oscillations.
Intermittent phases of high eccentricity increase the chance that
stars become damaged inside the tidal radius of the central hole. Such
events can produce debris and lead to recurring episodes of enhanced
accretion activity.
Methods.We introduce an effective loss cone and associate it with tidal disruptions during the high-eccentricity phases of the Kozai cycle. By numerical integration of the trajectories forming the boundary of the loss cone, we determine its shape and volume. We also include the effect of a relativistic advance of the pericentre.
Results.The potential of the disc has the efffect of enlarging the loss cone,
therefore, the predicted number of tidally disrupted stars should grow by factor
of 102. On the other hand, the effect of the cluster mean potential,
together with the relativistic pericentre advance, act against the eccentricity
oscillations. In the end we expect the tidal disruption events to be approximately
ten times more frequent in comparison with the model in which the three
effects – the cluster mean field, the relativistic pericentre advance, and
the Kozai mechanism – are all ignored. The competition of different influences
suppresses the predicted star-disruption rate as the black hole mass increases.
Hence, the process under consideration is more important for intermediate-mass
black holes,
.
Key words: accretion, accretion disks / black hole physics / stellar dynamics
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.