Issue |
A&A
Volume 469, Number 3, July III 2007
|
|
---|---|---|
Page(s) | 1169 - 1182 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20066865 | |
Published online | 11 April 2007 |
Survival of the mm-cm size grain population observed in protoplanetary disks*
1
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: brauer@mpia.de
2
Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy e-mail: natta@arcetri.astro.it
Received:
4
December
2006
Accepted:
6
April
2007
Millimeter interferometry provides evidence for the presence of mm to cm size “pebbles” in the outer parts of disks around pre-main-sequence stars. The observations suggest that large grains are produced relatively early in disk evolution (<1 Myr) and remain at large radii for longer periods of time (5 to 10 Myr). Simple theoretical estimates of the radial drift time of solid particles, however, imply that they would drift inward over a time scale of less than 0.1 Myr. In this paper, we address this conflict between theory and observation, using more detailed theoretical models, including the effects of sedimentation, collective drag forces and turbulent viscosity. We find that, although these effects slow down the radial drift of the dust particles, this reduction is not sufficient to explain the observationally determined long survival time of mm/cm-sized grains in protoplanetary disks. However, if for some reason the gas to dust ratio in the disk is reduced by at least a factor of 20 from the canonical value of 100 (for instance through photoevaporation of the gas), then the radial drift time scales become sufficiently large to be in agreement with observations.
Key words: accretion, accretion disks / stars: circumstellar matter / stars: formation / stars: pre-main sequence / infrared: stars / stars: planetary systems: protoplanetary disks
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.