Issue |
A&A
Volume 469, Number 2, July II 2007
|
|
---|---|---|
Page(s) | 425 - 436 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20066897 | |
Published online | 11 April 2007 |
Physical conditions in the neutral interstellar medium at z = 2.43 toward Q 2348-011*
1
European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago, Chile e-mail: [pnoterda;cledoux]@eso.org
2
Institut d'Astrophysique de Paris, CNRS - Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France e-mail: petitjean@iap.fr
3
LERMA, Observatoire de Paris, 61 avenue de l'Observatoire, 75014 Paris, France
4
IUCAA, Post Bag 4, Ganesh Khind, Pune 411 007, India e-mail: anand@iucaa.ernet.in
5
LUTH, Observatoire de Paris, 61 Avenue de l'Observatoire, 75014 Paris, France e-mail: franck.lepetit@obspm.fr
Received:
7
December
2006
Accepted:
6
March
2007
Aims.We aim at deriving the physical conditions in the neutral gas associated with damped Lyman-α systems using observation and analysis of H2 and C i absorptions.
Methods.We obtained a high-resolution VLT-UVES spectrum of the quasar Q 2348-011
over a wavelength range that covers most of the prominent metal and
molecular absorption lines from
the (H i) = 20.50 ± 0.10 damped Lyman-α system at
.
We detected H2 in this system and measured column densities of H2, C i, C i*,
C i
Si ii, P ii, S ii, Fe ii, and Ni ii.
From the column density ratios and, in
particular, the relative populations of H2 rotational and C i fine-structure levels, we derived the
physical conditions in the gas (relative abundances, dust-depletion, particle density, kinetic
temperature, and ionising flux) and discuss physical conditions in the neutral phase.
Results.Molecular hydrogen was detected in seven components in the first four
rotational levels (J = 0–3) of the vibrational ground state. Absorption lines of H2
(resp. J = 5) rotational levels are
detected in six (resp. two) of
these components. This leads to a total molecular fraction of
.
Fourteen components are needed to reproduce the metal-line profiles.
The overall metallicity is found to be -0.80, -0.62, -1.17 ± 0.10 for,
respectively, [Si/H], [S/H] and [Fe/H].
We confirm the earlier findings that there is a correlation between
(Fe ii)/N(S ii)
and
(Si ii)/N(S ii) from different components indicative of a dust-depletion
pattern. Surprisingly, however, the depletion of metals onto dust in the H2 components
is not large
in this system:
[Fe/S] = -0.8 to -0.1.
The gas in H2-bearing components is found to be
cold but still hotter than similar gas in our Galaxy (
K,
instead of typically 80 K) and
dense (
cm-3).
There is an anti-correlation (
) between
the logarithm of the photo-absorption rate,
, and
(H2)/N(C i) derived for each
H2 component. We show that this is mostly due to shielding effects and
imply that the photo-absorption rate
is a good indicator of the physical
conditions in the gas. We find that the gas is immersed in an
intense UV field, about one
order of magnitude higher than in the solar vicinity.
These results suggest that the gas in H2-bearing DLAs is clumpy, and
star-formation occurs in the associated object.
Key words: galaxies: ISM / quasars: absorption lines / quasars: individuals: Q 2348-011
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.