Issue |
A&A
Volume 469, Number 2, July II 2007
|
|
---|---|---|
Page(s) | 511 - 527 | |
Section | Galactic structure, stellar clusters, and populations | |
DOI | https://doi.org/10.1051/0004-6361:20066362 | |
Published online | 02 May 2007 |
Dark matter in the Milky Way
II. The HI gas distribution as a tracer of the gravitational potential
1
Argelander-Institut für Astronomie, Universität Bonn (Founded by merging of the Sternwarte, Radioastronomisches Institut and Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn.) , Auf dem Hügel 71, 53121 Bonn, Germany e-mail: [pkalberla;ldedes;jkerp]@astro.uni-bonn.de
2
Tartu Observatory, 61602 Toravere, Estonia e-mail: urmas@aai.ee
Received:
8
September
2006
Accepted:
20
March
2007
Context.Gas within a galaxy is forced to establish pressure balance against gravitational forces. The shape of an unperturbed gaseous disk can be used to constrain dark matter models.
Aims.We derive the 3D volume density distribution for the Milky Way
out to a galactocentric radius of 40 kpc and a height of 20 kpc to
constrain the Galactic mass distribution.
Methods.We used the Leiden/Argentine/Bonn all sky 21-cm line survey. The transformation from brightness temperatures to densities depends on the rotation curve. We explored several models, reflecting different dark matter distributions. Each of these models was set up to solve the combined Poisson-Boltzmann equation in a self-consistent way and optimized to reproduce the observed flaring.
Results.Besides a massive extended halo of
1012
, we
find a self-gravitating dark matter disk with
to 3
1011
, including a dark matter ring at
kpc with
to 2.8
1010
. The existence of the ring was previously postulated from EGRET data and coincides with a giant
stellar structure that surrounds the Galaxy. The resulting Milky Way
rotation curve is flat up to
kpc and slowly decreases
outwards. The
gas layer is strongly flaring. The HWHM scale
height is 60 pc at
kpc and increases to ~2700 pc at
kpc. Spiral arms cause a noticeable imprint on the
gravitational field, at least out to
kpc.
Conclusions.Our mass model supports previous proposals that the giant stellar
ring structure is due to a merging dwarf galaxy. The fact that the
majority of the dark matter in the Milky Way for kpc can
be successfully modeled by a self-gravitating isothermal disk raises
the question of whether this massive disk may have been caused by
similar merger events in the past. The substructure in the Galactic dark
matter disk suggests a dissipative nature for the dark matter disk.
Key words: Galaxy: disk / Galaxy: structure / Galaxy: kinematics and dynamics / galaxies: interactions / ISM: structure / Galaxy: halo
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.