Issue |
A&A
Volume 469, Number 2, July II 2007
|
|
---|---|---|
Page(s) | 687 - 706 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20066321 | |
Published online | 03 April 2007 |
Three-dimensional hydrodynamical simulations of surface convection in red giant stars
Impact on spectral line formation and abundance analysis
1
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, 85741 Garching b. München, Germany e-mail: remo@mpa-garching.mpg.de
2
Department of Astronomy and Space Physics, Uppsala University, BOX 515, 751 20 Uppsala, Sweden
3
Research School of Astronomy & Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611, Australia e-mail: [martin;art]@mso.anu.edu.au
Received:
30
August
2006
Accepted:
26
March
2007
Aims.We investigate the impact of realistic three-dimensional (3D) hydrodynamical model atmospheres of red giant stars at different metallicities on the formation of spectral lines of a number of ions and molecules.
Methods.We carry out realistic, ab initio, 3D, hydrodynamical simulations of
surface convection at the surface of red giant stars with
varying effective temperatures and metallicities.
We use the convection simulations as time-dependent
hydrodynamical model stellar atmospheres to calculate spectral lines
of a number of ions
(,
,
,
,
,
, and
) and molecules (CH, NH, and OH)
under the assumption of local thermodynamic equilibrium (LTE).
We carry out a differential comparison of the line strengths computed in 3D
with the results of analogous line formation calculations for classical,
1D, hydrostatic, plane-parallel marcs model atmospheres in order
to estimate the impact of 3D models on the derivation of elemental abundances.
Results.The temperature and density inhomogeneities and correlated velocity fields
in 3D models, as well as the differences between the mean 3D stratifications
and corresponding 1D model atmospheres significantly affect the
predicted strengths of spectral lines.
Under the assumption of LTE,
the low atmospheric temperatures encountered in 3D model
atmospheres of very metal-poor giant stars cause spectral lines
from neutral species and molecules to appear stronger than within
the framework of 1D models.
As a consequence, elemental abundances derived from these lines using 3D models
are significantly lower than according to 1D analyses.
In particular, the differences between 3D and 1D abundances of C, N, and O derived from CH, NH, and
OH weak low-excitation lines are found to be in the range -0.5 dex to -1.0 dex for the
the red giant stars at considered here.
At this metallicity, large negative corrections (about -0.8 dex) are also found, in LTE, for
weak low-excitation
lines.
We caution, however, that the neglected departures from LTE might be significant for
these and other elements and comparable to the effects due to stellar granulation.
Key words: convection / hydrodynamics / line: formation / stars: abundances / stars: late-type / stars: atmospheres
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.