Issue |
A&A
Volume 468, Number 1, June II 2007
|
|
---|---|---|
Page(s) | 255 - 261 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20066755 | |
Published online | 19 March 2007 |
A 3D radiative transfer framework
II. Line transfer problems
1
Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: yeti@hs.uni-hamburg.de
2
Dept. of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Rm 100, Norman, OK 73019, USA e-mail: baron@nhn.ou.edu
3
NERSC, Lawrence Berkeley National Laboratory, MS 50F-1650, 1 Cyclotron Rd, Berkeley, CA 94720-8139, USA
Received:
16
November
2006
Accepted:
12
March
2007
Context.Higher resolution telescopes as well as 3D numerical simulations will require the development of detailed 3D radiative transfer calculations. Building upon our previous work we extend our method to include both continuum and line transfer.
Aims.We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in 3D static atmospheres.
Methods.The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a long-characteristics method. The approximate Λ operator is constructed considering nearest neighbors exactly. The code is parallelized over both wavelength and solid angle using the MPI library.
Results.We present the results of several test cases with different values of the thermalization parameter and two choices for the temperature structure. The results are directly compared to 1D spherical tests. With our current grid setup the interior resolution is much lower in 3D than in 1D, nevertheless the 3D results agree very well with the well-tested 1D calculations. We show that, with relatively simple parallelization, the code scales to very large number of processors which is mandatory for practical applications.
Conclusions.Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. Our current code scales to very large numbers of processors, but requires larger memory per processor at high spatial resolution.
Key words: radiative transfer / scattering / line: formation / methods: numerical
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.