Issue |
A&A
Volume 468, Number 1, June II 2007
|
|
---|---|---|
Page(s) | 205 - 220 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20065824 | |
Published online | 20 February 2007 |
Near-IR spectra of red supergiants and giants*
I. Models with solar and with mixing-induced surface abundance ratios
1
Observatoire Astronomique de Strasbourg, Université L. Pasteur & CNRS (UMR 7550), Strasbourg, France e-mail: lancon@astro.u-strasbg.fr
2
Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany
3
Institute of Astronomy, Katholieke Universiteit, Celestijnenlaan 200 B, 3001 Leuven, Belgium
4
Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD, UK
Received:
14
June
2006
Accepted:
2
January
2007
Context. It remains difficult to interpret the near-IR emission of young stellar populations. One main reason is our incomplete understanding of the spectra of luminous red stars.
Aims. This work provides a grid of theoretical spectra of red giant and supergiant stars, that extends through optical and near-IR wavelengths. For the first time, models are also provided with modified surface abundances of C, N and O, as a step towards accounting for the changes that occur due to convective dredge-up in red supergiants or may occur at earlier evolutionary stages in the case of rotation. The aims are (i) to assess how well current models reproduce observed spectra, in particular in the near-IR; (ii) to quantify the effects of the abundance changes on the spectra; and (iii) to determine how these changes affect estimates of fundamental stellar parameters.
Methods.
Spectra are computed with the model atmosphere code PHOENIX
and compared with a homogeneous set of observations.
Although the empirical spectra have a resolution of only
, we emphasize that models must
be calculated at high spectral resolution in order to
reproduce the shapes of line blends and molecular bands.
Results.
Giant star spectra of class III can be fitted extremely well
at solar metallicity down to ~3400 K, where difficulties appear
in the modelling of near-IR H2O and TiO absorption bands.
Luminous giants of class II can be fitted well too,
with modified surface abundances preferred in a minority of cases,
possibly indicating mixing in excess of standard first dredge-up.
Supergiant stars show a larger variety of near-IR spectra, and
good fits are currently obtained for about one third of the observations only.
Modified surface abundances help reproducing strong CN bands, but
do not suffice to resolve the difficulties.
The effect of the abundance changes on the estimated depends on the
wavelength range of observation and can amount several 100 K.
Conclusions. While theoretical spectra for giant stars are becoming very satisfactory, red supergiants require further work. The model grid must be extended, in particular to larger micro-turbulent velocities. Some observed spectra may call for models with even lower gravities than explored here (and therefore probably stellar winds), and/or with more extreme abundances than predicted by standard non-rotating evolution models. Non-static atmospheres models should also be envisaged.
Key words: stars: fundamental parameters / stars: abundances / infrared: stars / stars: atmospheres
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.