Issue |
A&A
Volume 467, Number 3, June I 2007
|
|
---|---|---|
Page(s) | 1265 - 1274 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20077139 | |
Published online | 03 April 2007 |
Testing the predicted mass-loss bi-stability jump at radio wavelengths
1
Instituto Argentino de Radioastronomía, C.C.5, (1894) Villa Elisa, Argentina
2
Facultad de Cs. Astronómicas y Geofísicas, UNLP, Paseo del Bosque s/n, (1900) La Plata, Argentina e-mail: pbenaglia@fcaglp.unlp.edu.ar
3
Keele University, Astrophysics, Lennard-Jones Lab, ST5 5BG, UK e-mail: jsv@astro.keele.ac.uk
4
Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK
5
Departamento de Física, EPS, Universidad de Jaén, Campus Las Lagunillas s/n, Edif. A3, 23071 Jaén, Spain e-mail: jmarti@ujaen.es
6
Instituto de Astrofísica de Andalucía, Camino bajo de Huétor 50, Granada 18008, Spain e-mail: jmaiz@iaa.es
7
Ramón y Cajal fellow, Ministerio de Educación y Ciencia, Spain
8
Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia e-mail: Baerbel.Koribalski@csiro.au
9
Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK e-mail: Paul.Crowther@sheffield.ac.uk
Received:
19
January
2007
Accepted:
21
March
2007
Context.Massive stars play a dominant role in the Universe, but one of the main drivers for their evolution, their mass loss, remains poorly understood.
Aims.In this study, we test the theoretically predicted mass-loss behaviour as a function of stellar effective temperature across the so-called “bi-stability” jump.
Methods.We observe OB supergiants in the spectral range O8-B3 at radio wavelengths to measure their thermal radio flux densities, and complement these measurements with data from the literature. We derive the radio mass-loss rates and wind efficiencies, and compare our results with Hα mass-loss rates and predictions based on radiation-driven wind models.
Results.The wind efficiency shows the possible presence of a local maximum around an effective temperature of 21 000 K – in
qualitative agreement with predictions. Furthermore, we find that the absolute values of the
radio mass-loss rates show good agreement with empirical Hα
rates derived assuming homogeneous winds – for the spectral range under consideration. However, the empirical mass-loss rates are
larger (by a factor of a few) than the predicted rates from radiation-driven wind theory for
objects above the bi-stability jump (BSJ) temperature, whilst they are smaller (by a factor of a few) for stars
below the BSJ temperature. The reason for these discrepancies remains as yet unresolved. A new wind momenta-luminosity
relation (WLR) for O8-B0 stars has been derived using the radio observations. The validity of the WLR as a function of the fitting parameter related to the force multiplier (Kudritzki & Puls, 2000, ARA&A, 629) is discussed.
Conclusions.Our most interesting finding is that the qualitative behaviour of the empirical wind efficiencies with effective temperature is in line with the predicted behaviour, and this presents the first hint of empirical evidence for the predicted mass-loss bi-stability jump. However, a larger sample of stars around the BSJ needs to be observed to confirm this finding.
Key words: radio continuum: stars / stars: early-type / stars: mass-loss / stars: winds, outflows
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.