Issue |
A&A
Volume 467, Number 3, June I 2007
|
|
---|---|---|
Page(s) | 907 - 910 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20077132 | |
Published online | 19 March 2007 |
A new equation for the mid-plane potential of power law disks
1
Université Bordeaux1/CNRS/OASU/UMR 5804/L3AB, 2 rue de l'Observatoire, 33270 Floirac, France e-mail: [jean-marc.hure;franck.hersant]@obs.u-bordeaux1.fr
2
LUTh/Observatoire de Paris-Meudon-Nancay, Place Jules Janssen, 92195 Meudon Cedex, France
Received:
19
January
2007
Accepted:
20
February
2007
Aims.We show that the gravitational potential ψ in the plane of an axisymmetrical flat disk where the surface density varies as a power s of the radius R obeys an inhomogeneous first-order Ordinary Differential Equation (ODE) solvable by standard techniques.
Methods.The exact derivative of the midplane potential in its integral form is found to be algebrically linked to the potential itself.
Results.The ODE reads where Λ is fully analytical. The potential being exactly known at the origin for any index s (and at infinity as well), the search for solutions consists of a Two-point Boundary Value Problem (TBVP) with Dirichlet conditions. The computating time is then linear with the number of grid points, instead of quadratic from direct summation methods. Complex mass distributions which can be decomposed into a mixture of power law surface density profiles are easily accessible through the superposition principle.
Conclusions.This ODE definitively takes the place of the untractable bidimensional Poisson equation for planar calculations. It opens new horizons to investigate various aspects related to self-gravity in astrophysical disks (force calculations, stability analysis, etc.).
Key words: gravitation / methods: analytical / accretion, accretion disks
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.